1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
//! Support for protected mode operation.
//!
//! This includes the minimal support for segmented memory and hardware task management
//! that is required to operate in protected mode with a flat memory model.
use core::arch::asm;
use core::fmt;
use core::num::NonZeroU16;
use static_assertions::const_assert_eq;
use tartan_bitfield::{
bitfield, bitfield_accessors, bitfield_without_debug, get_bit, set_bit, Bitfield,
};
use tartan_c_enum::c_enum;
#[cfg(doc)]
use super::FlagRegister;
#[cfg(doc)]
use crate::x86_64::protection::TaskStateSegmentHeader;
#[cfg(doc)]
use crate::x86_64::ExtendedFeatureEnableRegister;
/// `GDTR`: Points to the memory range of the global descriptor table (GDT).
#[repr(C, packed)]
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub struct GlobalDescriptorTableRegister {
/// The inclusive maximum address offset (i.e., size - 1) of the descriptor table.
pub limit: u16,
/// Base address of the descriptor table
pub address: usize,
}
impl GlobalDescriptorTableRegister {
/// Retrieve the current value of this register
pub fn get() -> Self {
let mut value = Self::default();
unsafe {
asm!(
"sgdt [{0}]",
in(reg) &mut value,
);
}
value
}
/// Update the register to the given value.
///
/// # Safety
/// This register fundamentally affects memory accesses and can have an impact on
/// memory safety.
pub unsafe fn set(value: &Self) {
asm!(
"lgdt [{0}]",
in(reg) value,
);
}
/// Update the global descriptor table pointer and all segment registers.
///
/// # Safety
/// This register fundamentally affects memory accesses and can have an impact on
/// memory safety.
#[allow(named_asm_labels)]
pub unsafe fn set_with_segments(
gdt_pointer: &Self,
code_selector: Selector,
data_selector: Selector,
) {
// TODO: Disable interrupts?
#[cfg(target_arch = "x86")]
asm!(
"
// Set the global descriptor table register
lgdt [{gdt_pointer}]
// Update the data segment selectors
mov ds, {data_selector:e}
mov es, {data_selector:e}
mov fs, {data_selector:e}
mov gs, {data_selector:e}
mov ss, {data_selector:e}
// Update the code segment selector. Directly loading the CS register doesn't
// work, so we use a far return. The 'return' is really a jump to the next
// instruction using a far pointer we push onto the stack, consisting of:
// * [rsp] = 32-bit offset
// * [rsp + 4] = 32-bit segment selector (zero-extended from 16 bits)
push {code_selector:e}
mov eax, offset .dummy_target
push eax
retf
.dummy_target:
",
gdt_pointer = in(reg) gdt_pointer,
data_selector = in(reg) u16::from(data_selector),
code_selector = in(reg) u16::from(code_selector),
out("eax") _,
);
#[cfg(target_arch = "x86_64")]
asm!(
"
// Set the global descriptor table register
lgdt [{gdt_pointer}]
// Update the data segment selectors
mov ds, {data_selector:r}
mov es, {data_selector:r}
mov fs, {data_selector:r}
mov gs, {data_selector:r}
mov ss, {data_selector:r}
// Update the code segment selector. Directly loading the CS register doesn't
// work, so we use a far return. The 'return' is really a jump to the next
// instruction using a far pointer we push onto the stack, consisting of:
// * [rsp] = 64-bit offset
// * [rsp + 8] = 64-bit segment selector (zero-extended from 16 bits)
push {code_selector:r}
lea rax, [rip + .dummy_target]
push rax
rex64 retf
.dummy_target:
",
gdt_pointer = in(reg) gdt_pointer,
data_selector = in(reg) u16::from(data_selector),
code_selector = in(reg) u16::from(code_selector),
out("rax") _,
);
}
}
/// `LDTR`: Contains a [`Selector`] referencing a [`SegmentDescriptor`] that points to the
/// the local descriptor table (LDT).
///
/// Note that this type cannot be instantiated. It simply serves as a namespace for the
/// [`get`](Self::get) and [`set`](Self::set) methods, which work on a [`Selector`]
/// instance.
#[allow(clippy::empty_enum)]
pub enum LocalDescriptorTableRegister {}
impl LocalDescriptorTableRegister {
/// Retrieve the current value of this register
pub fn get() -> Selector {
let mut value = Selector(0);
unsafe {
asm!(
"sldt {0:x}",
out(reg) value.0,
);
}
value
}
/// Update the register with the value in this struct.
///
/// The value must point to an entry in the global descriptor table
/// ([`local`](Selector::local) == `false`) with the
/// [`SystemDescriptorType::LocalDescriptorTable`] type.
///
/// # Safety
/// This register fundamentally affects memory accesses and can have an impact on
/// memory safety.
pub unsafe fn set(selector: Selector) {
asm!(
"lldt {0:x}",
in(reg) selector.0,
);
}
/// Get a pointer to the [`SegmentDescriptor`] for the currently-loaded local
/// descriptor table, using the value of this register.
///
/// # Safety
/// The LDTR must not loaded with a selector for a valid LDR segment descriptor. The
/// returned pointer is only valid until the LDTR is modified.
pub unsafe fn current_descriptor() -> *const SegmentDescriptor {
let address = LocalDescriptorTableRegister::get().descriptor_address();
address as *const SegmentDescriptor
}
}
/// `TR`: Contains a [`Selector`] referencing a [`SegmentDescriptor`] that points to the
/// current task state segment (TSS).
///
/// Note that this type cannot be instantiated. It simply serves as a namespace for the
/// [`get`](Self::get) and [`set`](Self::set) methods, which work on a [`Selector`]
/// instance.
#[allow(clippy::empty_enum)]
pub enum TaskRegister {}
impl TaskRegister {
/// Retrieve the current value of this register
pub fn get() -> Selector {
let mut value = Selector(0);
unsafe {
asm!(
"str {0:x}",
out(reg) value.0,
);
}
value
}
/// Update the register with the provided selector value.
///
/// The value must point to an entry in the global descriptor table
/// ([`local`](Selector::local) == `false`) with one of the
/// `SystemDescriptorType::TaskState*` types.
///
/// # Safety
/// This register fundamentally affects memory accesses and can have an impact on
/// memory safety.
pub unsafe fn set(selector: Selector) {
asm!(
"ltr {0:x}",
in(reg) selector.0,
);
}
}
/// Standard segment registers (`CS`, `DS`, `SS`, etc.), which contain [`Selector`]s.
pub enum SegmentRegister {
/// `CS` register, which controls instruction loading
Code,
/// `DS` register, which controls the default segment for load/store instructions
Data,
/// `SS` segment register, which controls the location of the stack pointer and stack
/// push and pop instructions.
Stack,
/// `ES` segment register, which can be used as an additional data segment.
Extra,
/// `FS` segment register, which can be used as an additional data segment.
ExtraF,
/// `GS` segment register, which can be used as an additional data segment.
ExtraG,
}
impl SegmentRegister {
/// Retrieve the current value of this register
pub fn get(self) -> Selector {
let mut value = Selector(0);
unsafe {
match self {
Self::Code => asm!("mov {0:x}, cs", out(reg) value.0),
Self::Data => asm!("mov {0:x}, ds", out(reg) value.0),
Self::Stack => asm!("mov {0:x}, ss", out(reg) value.0),
Self::Extra => asm!("mov {0:x}, es", out(reg) value.0),
Self::ExtraF => asm!("mov {0:x}, fs", out(reg) value.0),
Self::ExtraG => asm!("mov {0:x}, gs", out(reg) value.0),
}
}
value
}
/// Update the register with the provided selector value.
///
/// # Safety
/// This register fundamentally affects memory accesses and can have an impact on
/// memory safety.
pub unsafe fn set(self, selector: Selector) {
match self {
Self::Code => asm!("mov cs, {0:x}", in(reg) selector.0),
Self::Data => asm!("mov ds, {0:x}", in(reg) selector.0),
Self::Stack => asm!("mov ss, {0:x}", in(reg) selector.0),
Self::Extra => asm!("mov es, {0:x}", in(reg) selector.0),
Self::ExtraF => asm!("mov fs, {0:x}", in(reg) selector.0),
Self::ExtraG => asm!("mov gs, {0:x}", in(reg) selector.0),
}
}
}
bitfield! {
/// A reference to an entry in a segment descriptor table.
///
/// Used as the value of the segment registers `CS`, `DS`, etc. as well as the
/// [`LocalDescriptorTableRegister`] and [`TaskRegister`].
pub struct Selector(u16) {
/// `RPL`: The privilege level "requested" when accessing the referenced segment.
///
/// This may be different than the current privilege level (CPL), in which case
/// the access must allowed for *both* the CPL and RPL. This is intended to allow
/// OS code to limit its privileges when executing on behalf of user code.
[0..2] pub privilege_level: u8,
/// Indicates that this selector references a descriptor in the local descriptor
/// table (LDT). Otherwise, it references the global descriptor table (GDT).
[2] pub local,
}
}
impl Selector {
const OFFSET_MASK: u16 = 0xfff8;
/// Create a new selector with the given field values
pub const fn new(offset: u16, privilege_level: u8, local: bool) -> Self {
// TODO: Rework bitfield crate to allow creating in const contexts
let value = offset & Self::OFFSET_MASK
| (privilege_level & 0b11) as u16
| (local as u16) << 2;
Self(value)
}
/// Create a null selector
pub const fn null() -> Self {
Self(0)
}
/// The offset of the referenced segment entry in the descriptor table.
pub fn offset(self) -> u16 {
self.0 & Self::OFFSET_MASK
}
/// Update the offset of the referenced entry in the descriptor table.
///
/// # Panics
/// Panics if the new offset is not aligned on an 8-byte boundary.
pub fn set_offset(&mut self, offset: u16) {
assert!(
offset & !Self::OFFSET_MASK == 0,
"Descriptor offset {offset} is not aligned on an 8-byte boundary"
);
self.0 &= !Self::OFFSET_MASK;
self.0 |= offset;
}
/// Calculate the address of the descriptor referenced by this selector
pub fn descriptor_address(self) -> usize {
let table_address = if self.local() {
let local_table =
unsafe { &*(LocalDescriptorTableRegister::current_descriptor()) };
local_table.address()
} else {
GlobalDescriptorTableRegister::get().address
};
table_address + self.offset() as usize
}
}
/// Settings common to [`SegmentDescriptor`]s and [`GateDescriptor`]s.
pub trait DescriptorFlags: Bitfield<u32> {
bitfield_accessors! {
/// If this is a system descriptor, indicates which type.
///
/// Only applies if [`is_application`](Self::is_application) is false.
[ 8..12] system_type: u8 as SystemDescriptorType,
/// The processor sets this bit whenever a segment register points to this
/// segment.
///
/// The process never resets this itself, but it can be cleared manually.
///
/// Only applies if [`is_application`](Self::is_application) is true.
[ 8] application_accessed,
/// If this is a code descriptor, indicates that the segment can be read.
/// Otherwise, it is execute-only.
///
/// Only applies if [`is_application`](Self::is_application) and
/// [`is_code`](Self::is_code) are true.
[ 9] code_readable,
/// If this is a data descriptor, indicates that this segment is writable.
///
/// Required for stack segments.
///
/// Only applies if [`is_application`](Self::is_application) is true and
/// [`code_descriptor`](Self::is_code) is false.
[ 9] data_writable,
/// If this is a code descriptor, indicates that this segment can be executed
/// with lower privileges than [`privilege_level`](Self::privilege_level).
///
/// Only applies if [`is_application`](Self::is_application) and
/// [`is_code`](Self::is_code) are true.
[10] code_conforming,
/// If this is a data descriptor, indicates that the segment expands toward lower
/// addresses (stack-like) if its limit is changed.
///
/// Only applies if [`is_application`](Self::is_application) is true and
/// [`is_code`](Self::is_code) is false.
[10] data_expand_down,
/// Indicates whether this is a code (true) or data (false) descriptor.
///
/// Only applies if [`is_application`](Self::is_application) is true.
[11] is_code,
/// `S`: Indicates that this is an application section descriptor if true.
/// Otherwise, this is a system descriptor.
[12] is_application,
/// `DPL`: The privilege level associated with the segment.
///
/// This has several meanings depending on the segment type:
/// * For stack segments, this is the *exact* privilege level required to use
/// the segment as a stack.
/// * For data segments, this is the minimum privilege (maximum number) required
/// to access the segment.
/// * For call gates, this is the minimum privilege (maximum number) required to
/// use the gate.
/// * For code segments:
/// * If the segment is accessed through a call gate _or_
/// [`code_conforming`](Self::code_conforming) is true, this is the
/// *maximum* privilege level (minimum number) that can execute the code.
/// * Otherwise, it is the *exact* privilege level required to execute the
/// code.
[13..15] privilege_level: u8,
/// `P`: Indicates that the segment is defined.
[15] present,
/// `L`: If this is a code segment, indicates that it should be executed in 64-bit
/// mode.
///
/// Mutually exclusive with [`mode_32`](Self::mode_32).
///
/// Only applies if all of the following are true:
/// * [`is_application`](Self::is_application)
/// * [`is_code`](Self::is_code)
/// * [`ExtendedFeatureEnableRegister::long_mode_active`]
#[cfg(any(target_arch = "x86_64", doc))]
#[doc(cfg(target_arch = "x86_64"))]
[21] code_mode_64,
/// `D`/`B`: Indicates that the segment uses 32-bit mode. Otherwise, it is 16-bit,
/// unless [`code_mode_64`](Self::code_mode_64) is set.
///
/// Besides the address/operand sizes for instructions in code segments, this also
/// affects the upper bound of stack-like data segments with the
/// [`data_expand_down`](Self::data_expand_down) flag set.
///
/// Only applies if [`is_application`](Self::is_application) is true.
[22] application_mode_32,
}
/// Indicates that this is a [`GateDescriptor`].
fn is_gate(&self) -> bool {
!self.is_application() && self.system_type().is_gate()
}
}
c_enum! {
/// Discriminate types of segment descriptors that are not code or data.
pub enum SystemDescriptorType(u8) {
/// A [`SegmentDescriptor`] for a 16-bit task state segment (TSS) that is not
/// currently running or waiting on a call to another task.
#[cfg(any(target_arch = "x86", doc))]
#[doc(cfg(target_arch = "x86"))]
TaskStateAvailable16Bit = 1,
/// A [`SegmentDescriptor`] for a segment that contains a local descriptor table.
LocalDescriptorTable = 2,
/// A [`SegmentDescriptor`] for a 16-bit task state segment (TSS) that is either
/// running or waiting on a call to another task.
#[cfg(any(target_arch = "x86", doc))]
#[doc(cfg(target_arch = "x86"))]
TaskStateBusy16Bit = 3,
/// A [`GateDescriptor`] for a call to 16-bit code.
#[cfg(any(target_arch = "x86", doc))]
#[doc(cfg(target_arch = "x86"))]
CallGate16Bit = 4,
/// A [`GateDescriptor`] for task switching.
#[cfg(any(target_arch = "x86", doc))]
#[doc(cfg(target_arch = "x86"))]
TaskGate = 5,
/// A [`GateDescriptor`] for a 16-bit interrupt handler.
#[cfg(any(target_arch = "x86", doc))]
#[doc(cfg(target_arch = "x86"))]
InterruptGate16Bit = 6,
/// A [`GateDescriptor`] for a 16-bit trap handler.
#[cfg(any(target_arch = "x86", doc))]
#[doc(cfg(target_arch = "x86"))]
TrapGate16Bit = 7,
/// A [`SegmentDescriptor`] for a 32/64-bit task state segment (TSS) that is not
/// currently running or waiting on a call to another task.
TaskStateAvailable = 9,
/// A [`SegmentDescriptor`] for a 32/64-bit task state segment (TSS) that is
/// either running or waiting on a call to another task.
TaskStateBusy = 11,
/// A [`GateDescriptor`] for a call to 32/64-bit code.
CallGate = 12,
/// A [`GateDescriptor`] for a 32/64-bit interrupt handler.
InterruptGate = 14,
/// A [`GateDescriptor`] for a 32/64-bit interrupt handler.
///
/// A trap gate works identically to an interrupt gate, except that the processor
/// does not automatically clear [`FlagRegister::interrupt_enabled`] when it
/// invokes the handler through a trap gate.
TrapGate = 15,
}
}
impl SystemDescriptorType {
/// Indicates that this is a [`GateDescriptor`].
pub fn is_gate(self) -> bool {
#[cfg(target_arch = "x86")]
{
matches!(
self,
Self::CallGate
| Self::CallGate16Bit
| Self::InterruptGate
| Self::InterruptGate16Bit
| Self::TrapGate
| Self::TrapGate16Bit
| Self::TaskGate
)
}
#[cfg(target_arch = "x86_64")]
{
matches!(self, Self::CallGate | Self::InterruptGate | Self::TrapGate)
}
}
}
/// Generic entry in a global/local/interrupt descriptor table. Can be a
/// [`SegmentDescriptor`] or [`GateDescriptor`], depending on the type flags.
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct GenericDescriptor {
lower: u32,
/// Common descriptor settings.
pub flags: GenericDescriptorFlags,
#[cfg(any(target_arch = "x86_64", doc))]
#[doc(cfg(target_arch = "x86_64"))]
upper: u32,
// NOTE: In some cases, The processor verifies that this isn't a 32-bit descriptor by
// looking for the type field (bits 8..13) in this DWord and making sure it is 0.
#[cfg(any(target_arch = "x86_64", doc))]
#[doc(cfg(target_arch = "x86_64"))]
_reserved: u32,
}
#[cfg(target_arch = "x86")]
const_assert_eq!(8, core::mem::size_of::<GenericDescriptor>());
#[cfg(target_arch = "x86_64")]
const_assert_eq!(16, core::mem::size_of::<GenericDescriptor>());
bitfield_without_debug! {
/// Settings for [`GenericDescriptor`]s.
pub struct GenericDescriptorFlags(u32) {}
}
impl fmt::Debug for GenericDescriptorFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut struct_fmt = f.debug_struct("GenericDescriptorFlags");
struct_fmt.field("<value>", &self.0);
self.fmt_fields(&mut struct_fmt);
<Self as DescriptorFlags>::fmt_fields(self, &mut struct_fmt);
struct_fmt.finish()
}
}
impl DescriptorFlags for GenericDescriptorFlags {}
/// An entry in a segment descriptor table that defines a new segment. This includes code,
/// data, task state (TSS), and local descriptor table (LDT) segments.
///
/// Notes on the size of this structure:
/// * In 32-bit mode, this structure is always 8 bytes and contains a 32-bit base
/// address.
/// * In 64-bit mode:
/// * Task state and local descriptor table segment descriptors are expanded to 16
/// bytes with 64-bit base addresses.
/// * From the processor's perspective, code and data segments remain 8 bytes and the
/// address and limit are both ignored. However, this structure is still defined as
/// 16 bytes. This is fine, since the first 8 bytes are compatible and the rest will
/// be ignored.
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct SegmentDescriptor {
lower: u32,
/// Common segment descriptor settings.
pub flags: SegmentDescriptorFlags,
#[cfg(any(target_arch = "x86_64", doc))]
#[doc(cfg(target_arch = "x86_64"))]
upper: u32,
// NOTE: In some cases, The processor verifies that this isn't a 32-bit descriptor by
// looking for the type field (bits 8..13) in this DWord and making sure it is 0.
#[cfg(any(target_arch = "x86_64", doc))]
#[doc(cfg(target_arch = "x86_64"))]
_reserved: u32,
}
#[cfg(target_arch = "x86")]
const_assert_eq!(8, core::mem::size_of::<SegmentDescriptor>());
#[cfg(target_arch = "x86_64")]
const_assert_eq!(16, core::mem::size_of::<SegmentDescriptor>());
impl SegmentDescriptor {
/// The maximum supported value of the [`limit`](Self::limit) field (20 bits).
pub const LIMIT_MAX: u32 = 0x000f_ffff;
const LIMIT_MASK_LOWER: u32 = 0x0000_ffff;
const LIMIT_MASK_FLAGS: u32 = 0x000f_0000;
const ADDRESS_MASK_LOWER: u32 = 0xffff_0000;
const ADDRESS_MASK_FLAGS_LOWER: u32 = 0x0000_00ff;
const ADDRESS_MASK_FLAGS_UPPER: u32 = 0xff00_0000;
/// Create a zero-initialized descriptor
pub const fn new() -> Self {
#[cfg(target_arch = "x86")]
let value = Self { lower: 0, flags: SegmentDescriptorFlags(0) };
#[cfg(target_arch = "x86_64")]
let value =
Self { lower: 0, flags: SegmentDescriptorFlags(0), upper: 0, _reserved: 0 };
value
}
/// Base virtual address of the segment, to which offsets are added.
///
/// In 64-bit mode, this is ignored and assumed to be 0 for code and data segments,
/// but it still applies to task state and local descriptor table segments.
pub fn address(self) -> usize {
let mut address = ((self.lower & Self::ADDRESS_MASK_LOWER) >> 16) as usize;
address |= ((Self::ADDRESS_MASK_FLAGS_LOWER & self.flags.value()) << 16) as usize;
address |= (Self::ADDRESS_MASK_FLAGS_UPPER & self.flags.value()) as usize;
#[cfg(target_arch = "x86_64")]
{
address |= (self.upper as usize) << 32;
}
address
}
/// Update the base address.
pub fn set_address(&mut self, address: usize) {
#![allow(clippy::cast_possible_truncation)]
self.lower &= !Self::ADDRESS_MASK_LOWER;
self.lower |= (address << 16) as u32 & Self::ADDRESS_MASK_LOWER;
self.flags.0 &= !Self::ADDRESS_MASK_FLAGS_LOWER & !Self::ADDRESS_MASK_FLAGS_UPPER;
self.flags.0 |= Self::ADDRESS_MASK_FLAGS_LOWER & (address >> 16) as u32;
self.flags.0 |= Self::ADDRESS_MASK_FLAGS_UPPER & address as u32;
#[cfg(target_arch = "x86_64")]
{
self.upper = (address >> 32) as u32;
}
}
/// The "limit" of the segment, which is a maximum or minimum offset from the base
/// address.
///
/// If this is a stack-like data segment
/// ([`data_expand_down`](DescriptorFlags::data_expand_down)), then this value is the
/// *exclusive minimum* offset value. Otherwise, this is the *inclusive maximum*
/// offset value (i.e., size - 1).
///
/// This value may be in bytes or in 4KB units, depending on
/// [`flags.granularity`](SegmentDescriptorFlags::granularity).
///
/// In 64-bit mode, this is ignored (all limit checks are disabled) for code and data
/// segments, but it still applies to task state and local descriptor table segments.
pub fn limit(self) -> u32 {
let mut limit = self.lower & Self::LIMIT_MASK_LOWER;
limit |= self.flags.value() & Self::LIMIT_MASK_FLAGS;
limit
}
/// Update the segment limit.
///
/// # Panics
/// Panics if the limit is greater than [`LIMIT_MAX`](Self::LIMIT_MAX).
pub fn set_limit(&mut self, limit: u32) {
assert!(limit <= Self::LIMIT_MAX, "Segment limit too large: {limit:#x}");
self.lower &= !Self::LIMIT_MASK_LOWER;
self.lower |= Self::LIMIT_MASK_LOWER & limit;
self.flags.0 &= !Self::LIMIT_MASK_FLAGS;
self.flags.0 |= Self::LIMIT_MASK_FLAGS & limit;
}
}
impl fmt::Debug for SegmentDescriptor {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("SegmentDescriptor")
.field("address", &self.address())
.field("limit", &self.limit())
.field("flags", &self.flags)
.finish_non_exhaustive()
}
}
impl Default for SegmentDescriptor {
fn default() -> Self {
Self::new()
}
}
bitfield_without_debug! {
/// Settings for [`SegmentDescriptor`]s.
pub struct SegmentDescriptorFlags(u32) {
/// `AVL`: Ignored bit that can be used by the operating system.
///
/// Does not apply to call gates.
[20] pub os_defined,
/// `G`: Indicates that the segment limit is in units of 4KB. Otherwise, it is in
/// bytes.
[23] pub granularity,
}
}
impl fmt::Debug for SegmentDescriptorFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut struct_fmt = f.debug_struct("SegmentDescriptorFlags");
struct_fmt.field("<value>", &self.0);
self.fmt_fields(&mut struct_fmt);
<Self as DescriptorFlags>::fmt_fields(self, &mut struct_fmt);
struct_fmt.finish()
}
}
impl DescriptorFlags for SegmentDescriptorFlags {}
/// An entry in a segment descriptor table that points to an existing segment rather than
/// defining a new one.
///
/// This includes:
/// * Call gates, which allow controlled access to routines defined in a code segment
/// with a different priority level or word size.
/// * Interrupt and trap gates, which define handlers for interrupt vectors.
/// * Task gates, which support hardware task switching. These are not supported in
/// 64-bit mode.
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct GateDescriptor {
lower: u32,
/// Common gate descriptor settings.
pub flags: GateDescriptorFlags,
#[cfg(any(target_arch = "x86_64", doc))]
#[doc(cfg(target_arch = "x86_64"))]
upper: u32,
// NOTE: In some cases, The processor verifies that this isn't a 32-bit descriptor by
// looking for the type field (bits 8..13) in this DWord and making sure it is 0.
#[cfg(any(target_arch = "x86_64", doc))]
#[doc(cfg(target_arch = "x86_64"))]
_reserved: u32,
}
#[cfg(target_arch = "x86")]
const_assert_eq!(8, core::mem::size_of::<GateDescriptor>());
#[cfg(target_arch = "x86_64")]
const_assert_eq!(16, core::mem::size_of::<GateDescriptor>());
impl GateDescriptor {
const SELECTOR_MASK: u32 = 0xffff_0000;
const OFFSET_MASK_LOWER: u32 = 0x0000_ffff;
const OFFSET_MASK_UPPER: u32 = 0xffff_0000;
/// Create a zero-initialized descriptor
pub const fn new() -> Self {
#[cfg(target_arch = "x86")]
let value = Self { lower: 0, flags: GateDescriptorFlags(0) };
#[cfg(target_arch = "x86_64")]
let value =
Self { lower: 0, flags: GateDescriptorFlags(0), upper: 0, _reserved: 0 };
value
}
/// Selector that points to the code or task state segment to be accessed through this
/// gate.
///
/// For call, interrupt, and trap gates, this points to the code segment that contains
/// the routine to be executed. For task gates, this points to a task state segment
/// representing the task to activate.
pub fn selector(self) -> Selector {
#![allow(clippy::cast_possible_truncation)]
Selector(((self.lower & Self::SELECTOR_MASK) >> 16) as u16)
}
/// Update the selector pointing to the segment to be accessed through this gate.
pub fn set_selector(&mut self, selector: Selector) {
self.lower &= !Self::SELECTOR_MASK;
self.lower |= Self::SELECTOR_MASK & u32::from(selector.value()) << 16;
}
/// Offset of the entry point in code segment referenced by
/// [`selector`](Self::selector).
///
/// Only applies to call, interrupt, and trap gates.
pub fn entry_point_offset(self) -> usize {
let mut offset = (self.lower & Self::OFFSET_MASK_LOWER) as usize;
offset |= (self.flags.value() & Self::OFFSET_MASK_UPPER) as usize;
#[cfg(target_arch = "x86_64")]
{
offset |= (self.upper as usize) << 32;
}
offset
}
/// Update the offset of the entry point within the referenced code segment.
pub fn set_entry_point_offset(&mut self, offset: usize) {
#![allow(clippy::cast_possible_truncation)]
self.lower &= !Self::OFFSET_MASK_LOWER;
self.lower |= Self::OFFSET_MASK_LOWER & (offset as u32);
self.flags.0 &= !Self::OFFSET_MASK_UPPER;
self.flags.0 |= Self::OFFSET_MASK_UPPER & (offset as u32);
#[cfg(target_arch = "x86_64")]
{
self.upper = (offset >> 32) as u32;
}
}
}
impl fmt::Debug for GateDescriptor {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("GateDescriptor")
.field("selector", &self.selector())
.field("entry_point_offset", &self.entry_point_offset())
.field("flags", &self.flags)
.finish_non_exhaustive()
}
}
impl Default for GateDescriptor {
fn default() -> Self {
Self::new()
}
}
bitfield_without_debug! {
/// Settings for [`GateDescriptor`]s.
pub struct GateDescriptorFlags(u32) {
/// Number of stack parameters to copy if the code segment referenced by a call
/// gate uses a different stack segment.
///
/// Only applies to call gates.
[0..4] pub call_param_count: u8,
/// One-based index of the
/// [`interrupt_stack`](x86_64::TaskStateSegment::interrupt_stack) pointer to use
/// when handling an interrupt though this gate.
///
/// If this value is zero, then the stack segment is set to null.
///
/// Only applies to interrupt and trap gates.
#[cfg(any(target_arch = "x86_64", doc))]
#[doc(cfg(target_arch = "x86_64"))]
[0..2] pub interrupt_stack_index: u8,
}
}
impl fmt::Debug for GateDescriptorFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut struct_fmt = f.debug_struct("GateDescriptorFlags");
struct_fmt.field("<value>", &self.0);
self.fmt_fields(&mut struct_fmt);
<Self as DescriptorFlags>::fmt_fields(self, &mut struct_fmt);
struct_fmt.finish()
}
}
impl DescriptorFlags for GateDescriptorFlags {}
/// Bitmap that controls which I/O port addresses are covered by privilege checks.
///
/// For bit `N` of this structure (bit `N mod 8` of byte `floor(N / 8)`), up to
/// [`max_port`](Self::max_port):
/// * If the bit is set, then access to I/O port `N` is not allowed at privilege levels
/// below [`FlagRegister::io_privilege_level`] (greater numbers).
/// * If the bit is unset, then access to I/O port `N` is allowed from any privilege
/// level.
///
/// This structure is stored in the task state segment (TSS) at a variable location
/// indicated by its
/// [`io_permission_map_offset`](TaskStateSegmentHeader::io_permission_map_offset). It is
/// also variable-sized: if there are fewer than [`MAX_SIZE`](Self::MAX_SIZE) bytes
/// between the start of the permission map and the [`limit`](SegmentDescriptor::limit) of
/// the containing TSS, then the processor acts as though the bits for all ports past
/// `max_port_for_size(limit - offset)` are set.
#[derive(Debug, PartialEq, Eq)]
pub struct IOPermissionBitmap<T = [u8]>(T)
where
T: AsRef<[u8]> + AsMut<[u8]> + Eq + ?Sized;
impl IOPermissionBitmap {
/// Size in bytes required to map all I/O ports
pub const MAX_SIZE: usize = Self::required_size(u16::MAX);
/// Calculate the size in bytes of a map that has bits for ports up to and including
/// `max_port`.
///
/// Note that because of the way the processor reads this map, it requires an extra
/// byte at the end that does not map any ports.
///
/// ```
/// # use tartan_arch::x86_common::protection::IOPermissionBitmap;
/// #
/// assert_eq!(IOPermissionBitmap::required_size(0), 2);
/// assert_eq!(IOPermissionBitmap::required_size(7), 2);
/// assert_eq!(IOPermissionBitmap::required_size(8), 3);
/// assert_eq!(IOPermissionBitmap::required_size(0xa587), 0x14b2);
/// assert_eq!(IOPermissionBitmap::required_size(0xffff), 0x2001);
/// ```
pub const fn required_size(max_port: u16) -> usize {
max_port as usize / 8 + 2
}
/// Calculate the last I/O port that is covered by a map of the given size.
///
/// Note that because of the way the processor reads this map, it requires an extra
/// byte at the end that does not map any ports. Therefore, empty or single-byte maps
/// cannot represent _any_ ports, and this function returns `None` in those cases.
///
/// ```
/// # use core::num::NonZeroU16;
/// # use tartan_arch::x86_common::protection::IOPermissionBitmap;
/// #
/// assert_eq!(IOPermissionBitmap::max_port_for_size(0), None);
/// assert_eq!(IOPermissionBitmap::max_port_for_size(1), None);
/// assert_eq!(IOPermissionBitmap::max_port_for_size(2), NonZeroU16::new(7));
/// assert_eq!(IOPermissionBitmap::max_port_for_size(4), NonZeroU16::new(23));
/// assert_eq!(IOPermissionBitmap::max_port_for_size(0x2000), NonZeroU16::new(0xfff7));
/// assert_eq!(IOPermissionBitmap::max_port_for_size(0x2001), NonZeroU16::new(0xffff));
/// assert_eq!(IOPermissionBitmap::max_port_for_size(0x2002), NonZeroU16::new(0xffff));
/// assert_eq!(IOPermissionBitmap::max_port_for_size(usize::MAX), NonZeroU16::new(0xffff));
/// ```
pub const fn max_port_for_size(size: usize) -> Option<NonZeroU16> {
#[allow(clippy::cast_possible_truncation)]
if size <= 1 {
None
} else if size >= Self::MAX_SIZE {
NonZeroU16::new(u16::MAX)
} else {
NonZeroU16::new((((size - 1) * 8) - 1) as u16)
}
}
}
impl<T> IOPermissionBitmap<T>
where
T: AsRef<[u8]> + AsMut<[u8]> + Eq + ?Sized,
{
/// The number of bytes in this structure.
pub fn size(&self) -> usize {
self.0.as_ref().len()
}
/// The last I/O port that is covered by this map. The bits for all ports greater than
/// this value are assumed to be set.
pub fn max_port(&self) -> Option<NonZeroU16> {
IOPermissionBitmap::max_port_for_size(self.size())
}
fn is_port_mapped(&self, port: u16) -> bool {
match self.max_port() {
None => false,
Some(max) => port <= max.get(),
}
}
/// Get the value in this bitmap that indicates whether the port should be subject to
/// privilege level checks.
///
/// If the given port is beyond the range covered by this map
/// [`max_port`](Self::max_port), this will return true, in line with the processor's
/// behavior.
pub fn is_port_checked(&self, port: u16) -> bool {
if self.is_port_mapped(port) {
let byte = (port / 8) as usize;
#[allow(clippy::cast_possible_truncation)]
let bit = (port % 8) as u8;
get_bit(self.0.as_ref()[byte], bit)
} else {
// All remaining ports are assumed to be covered by privilege checks
true
}
}
/// Set the value in this bitmap that indicates whether the port should be subject
/// to privilege level checks.
///
/// # Panics
/// Panics if the given port is greater than [`max_port`](Self::max_port).
pub fn set_port_checked(&mut self, port: u16, value: bool) {
assert!(
self.is_port_mapped(port),
"Port {:x} is beyond the maximum value {:x?} supported by this map",
port,
self.max_port(),
);
let byte = (port / 8) as usize;
#[allow(clippy::cast_possible_truncation)]
let bit = (port % 8) as u8;
let map = self.0.as_mut();
map[byte] = set_bit(map[byte], bit, value);
}
}
#[cfg(test)]
mod test {
use super::*;
use core::mem;
#[cfg(target_arch = "x86_64")]
fn seg_desc_from_bytes(bytes: [u8; 16]) -> SegmentDescriptor {
unsafe { mem::transmute(bytes) }
}
#[cfg(target_arch = "x86_64")]
fn bytes_from_seg_desc(desc: SegmentDescriptor) -> [u8; 16] {
unsafe { mem::transmute(desc) }
}
#[test]
#[cfg(target_arch = "x86_64")]
#[rustfmt::skip]
fn test_descriptor_limit() {
assert_eq!(0x0000_0000, seg_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]).limit());
assert_eq!(0x0000_0000, seg_desc_from_bytes([
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0xf0, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]).limit());
assert_eq!(0x000f_ffff, seg_desc_from_bytes([
0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0x0f, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]).limit());
assert_eq!(0x000a_bcde, seg_desc_from_bytes([
0xde, 0xbc, 0x74, 0x48,
0x52, 0x93, 0x8a, 0x51,
0x72, 0x89, 0x73, 0x21,
0x28, 0x05, 0x86, 0x85,
]).limit());
let mut desc = seg_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_limit(0x000f_ffff);
assert_eq!(bytes_from_seg_desc(desc), [
0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0x0f, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
let mut desc = seg_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_limit(0x000a_bcde);
assert_eq!(bytes_from_seg_desc(desc), [
0xde, 0xbc, 0x00, 0x00,
0x00, 0x00, 0x0a, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
let mut desc = seg_desc_from_bytes([
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
desc.set_limit(0x0000_0000);
assert_eq!(bytes_from_seg_desc(desc), [
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0xf0, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
let mut desc = seg_desc_from_bytes([
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
desc.set_limit(0x000a_bcde);
assert_eq!(bytes_from_seg_desc(desc), [
0xde, 0xbc, 0xff, 0xff,
0xff, 0xff, 0xfa, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
}
#[test]
#[should_panic(expected = "Segment limit too large: 0x100000")]
#[cfg(target_arch = "x86_64")]
#[rustfmt::skip]
fn test_descriptor_limit_out_of_range() {
let mut desc = seg_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_limit(0x0010_0000);
}
#[test]
#[cfg(target_arch = "x86_64")]
#[rustfmt::skip]
fn test_descriptor_address() {
assert_eq!(0x0000_0000_0000_0000_usize, seg_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]).address());
assert_eq!(0x0000_0000_0000_0000_usize, seg_desc_from_bytes([
0xff, 0xff, 0x00, 0x00,
0x00, 0xff, 0xff, 0x00,
0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff,
]).address());
assert_eq!(0xffff_ffff_ffff_ffff_usize, seg_desc_from_bytes([
0x00, 0x00, 0xff, 0xff,
0xff, 0x00, 0x00, 0xff,
0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00,
]).address());
assert_eq!(0xaabb_ccdd_1122_3344_usize, seg_desc_from_bytes([
0x8f, 0x97, 0x44, 0x33,
0x22, 0x68, 0x5e, 0x11,
0xdd, 0xcc, 0xbb, 0xaa,
0xf8, 0x76, 0x89, 0xe5,
]).address());
let mut desc = seg_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_address(0xffff_ffff_ffff_ffff_usize);
assert_eq!(bytes_from_seg_desc(desc), [
0x00, 0x00, 0xff, 0xff,
0xff, 0x00, 0x00, 0xff,
0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00,
]);
let mut desc = seg_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_address(0xaabb_ccdd_1122_3344_usize);
assert_eq!(bytes_from_seg_desc(desc), [
0x00, 0x00, 0x44, 0x33,
0x22, 0x00, 0x00, 0x11,
0xdd, 0xcc, 0xbb, 0xaa,
0x00, 0x00, 0x00, 0x00,
]);
let mut desc = seg_desc_from_bytes([
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
desc.set_address(0x0000_0000_0000_0000_usize);
assert_eq!(bytes_from_seg_desc(desc), [
0xff, 0xff, 0x00, 0x00,
0x00, 0xff, 0xff, 0x00,
0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff,
]);
let mut desc = seg_desc_from_bytes([
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
desc.set_address(0xaabb_ccdd_1122_3344_usize);
assert_eq!(bytes_from_seg_desc(desc), [
0xff, 0xff, 0x44, 0x33,
0x22, 0xff, 0xff, 0x11,
0xdd, 0xcc, 0xbb, 0xaa,
0xff, 0xff, 0xff, 0xff,
]);
}
#[cfg(target_arch = "x86_64")]
fn gate_desc_from_bytes(bytes: [u8; 16]) -> GateDescriptor {
unsafe { mem::transmute(bytes) }
}
#[cfg(target_arch = "x86_64")]
fn bytes_from_gate_desc(desc: GateDescriptor) -> [u8; 16] {
unsafe { mem::transmute(desc) }
}
#[test]
#[cfg(target_arch = "x86_64")]
#[rustfmt::skip]
fn test_descriptor_offset() {
assert_eq!(0x0000_0000_0000_0000_usize, gate_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]).entry_point_offset());
assert_eq!(0x0000_0000_0000_0000_usize, gate_desc_from_bytes([
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff,
]).entry_point_offset());
assert_eq!(0xffff_ffff_ffff_ffff_usize, gate_desc_from_bytes([
0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00,
]).entry_point_offset());
assert_eq!(0xaabb_ccdd_1122_3344_usize, gate_desc_from_bytes([
0x44, 0x33, 0x8f, 0x97,
0x68, 0x5e, 0x22, 0x11,
0xdd, 0xcc, 0xbb, 0xaa,
0xf8, 0x76, 0x89, 0xe5,
]).entry_point_offset());
let mut desc = gate_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_entry_point_offset(0xffff_ffff_ffff_ffff_usize);
assert_eq!(bytes_from_gate_desc(desc), [
0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00,
]);
let mut desc = gate_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_entry_point_offset(0xaabb_ccdd_1122_3344_usize);
assert_eq!(bytes_from_gate_desc(desc), [
0x44, 0x33, 0x00, 0x00,
0x00, 0x00, 0x22, 0x11,
0xdd, 0xcc, 0xbb, 0xaa,
0x00, 0x00, 0x00, 0x00,
]);
let mut desc = gate_desc_from_bytes([
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
desc.set_entry_point_offset(0x0000_0000_0000_0000_usize);
assert_eq!(bytes_from_gate_desc(desc), [
0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff,
]);
let mut desc = gate_desc_from_bytes([
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
desc.set_entry_point_offset(0xaabb_ccdd_1122_3344_usize);
assert_eq!(bytes_from_gate_desc(desc), [
0x44, 0x33, 0xff, 0xff,
0xff, 0xff, 0x22, 0x11,
0xdd, 0xcc, 0xbb, 0xaa,
0xff, 0xff, 0xff, 0xff,
]);
}
#[test]
#[cfg(target_arch = "x86_64")]
#[rustfmt::skip]
fn test_descriptor_selector() {
assert_eq!(Selector(0x0000), gate_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]).selector());
assert_eq!(Selector(0x0000), gate_desc_from_bytes([
0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]).selector());
assert_eq!(Selector(0xffff), gate_desc_from_bytes([
0x00, 0x00, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]).selector());
assert_eq!(Selector(0xabcd), gate_desc_from_bytes([
0x94, 0x82, 0xcd, 0xab,
0x52, 0x93, 0x83, 0x51,
0x72, 0x89, 0x73, 0x21,
0x28, 0x05, 0x86, 0x85,
]).selector());
let mut desc = gate_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_selector(0xffff.into());
assert_eq!(bytes_from_gate_desc(desc), [
0x00, 0x00, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
let mut desc = gate_desc_from_bytes([
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
desc.set_selector(0xabcd.into());
assert_eq!(bytes_from_gate_desc(desc), [
0x00, 0x00, 0xcd, 0xab,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
]);
let mut desc = gate_desc_from_bytes([
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
desc.set_selector(0x0000.into());
assert_eq!(bytes_from_gate_desc(desc), [
0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
let mut desc = gate_desc_from_bytes([
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
desc.set_selector(0xabcd.into());
assert_eq!(bytes_from_gate_desc(desc), [
0xff, 0xff, 0xcd, 0xab,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
]);
}
#[test]
#[allow(clippy::bool_assert_comparison)]
fn test_is_port_checked() {
let map = IOPermissionBitmap([]);
assert_eq!(map.is_port_checked(0), true);
assert_eq!(map.is_port_checked(1), true);
assert_eq!(map.is_port_checked(u16::MAX), true);
let map = IOPermissionBitmap([0xff]);
assert_eq!(map.is_port_checked(0), true);
assert_eq!(map.is_port_checked(1), true);
assert_eq!(map.is_port_checked(8), true);
assert_eq!(map.is_port_checked(u16::MAX), true);
let map = IOPermissionBitmap([0x00, 0xff]);
assert_eq!(map.is_port_checked(0), false);
assert_eq!(map.is_port_checked(1), false);
assert_eq!(map.is_port_checked(7), false);
assert_eq!(map.is_port_checked(8), true);
assert_eq!(map.is_port_checked(u16::MAX), true);
let map = IOPermissionBitmap([0xaa, 0xff]);
assert_eq!(map.is_port_checked(0), false);
assert_eq!(map.is_port_checked(1), true);
assert_eq!(map.is_port_checked(2), false);
assert_eq!(map.is_port_checked(3), true);
assert_eq!(map.is_port_checked(4), false);
assert_eq!(map.is_port_checked(5), true);
assert_eq!(map.is_port_checked(6), false);
assert_eq!(map.is_port_checked(7), true);
assert_eq!(map.is_port_checked(8), true);
assert_eq!(map.is_port_checked(u16::MAX), true);
let map = IOPermissionBitmap([0x55, 0xff]);
assert_eq!(map.is_port_checked(0), true);
assert_eq!(map.is_port_checked(1), false);
assert_eq!(map.is_port_checked(2), true);
assert_eq!(map.is_port_checked(3), false);
assert_eq!(map.is_port_checked(4), true);
assert_eq!(map.is_port_checked(5), false);
assert_eq!(map.is_port_checked(6), true);
assert_eq!(map.is_port_checked(7), false);
assert_eq!(map.is_port_checked(8), true);
assert_eq!(map.is_port_checked(u16::MAX), true);
let map = IOPermissionBitmap([0xff, 0x00, 0xff]);
assert_eq!(map.is_port_checked(0), true);
assert_eq!(map.is_port_checked(7), true);
assert_eq!(map.is_port_checked(8), false);
assert_eq!(map.is_port_checked(15), false);
assert_eq!(map.is_port_checked(16), true);
assert_eq!(map.is_port_checked(u16::MAX), true);
// The processor expects the last byte to be 0xff, and it doesn't map any ports.
// For our purposes, we ignore it and treat it as though it were 0xff.
let map = IOPermissionBitmap([0x00]);
assert_eq!(map.is_port_checked(0), true);
assert_eq!(map.is_port_checked(1), true);
assert_eq!(map.is_port_checked(7), true);
assert_eq!(map.is_port_checked(8), true);
assert_eq!(map.is_port_checked(u16::MAX), true);
let map = IOPermissionBitmap([0x00, 0x00]);
assert_eq!(map.is_port_checked(0), false);
assert_eq!(map.is_port_checked(1), false);
assert_eq!(map.is_port_checked(7), false);
assert_eq!(map.is_port_checked(8), true);
assert_eq!(map.is_port_checked(15), true);
assert_eq!(map.is_port_checked(16), true);
assert_eq!(map.is_port_checked(u16::MAX), true);
}
#[test]
fn test_set_port_checked() {
let mut map = IOPermissionBitmap([0x00, 0x00, 0xff]);
map.set_port_checked(0, true);
assert_eq!(map.0, [0x01, 0x00, 0xff]);
let mut map = IOPermissionBitmap([0x00, 0x00, 0xff]);
map.set_port_checked(15, true);
assert_eq!(map.0, [0x00, 0x80, 0xff]);
let mut map = IOPermissionBitmap([0xff, 0xff, 0xff]);
map.set_port_checked(0, false);
assert_eq!(map.0, [0xfe, 0xff, 0xff]);
let mut map = IOPermissionBitmap([0xff, 0xff, 0xff]);
map.set_port_checked(15, false);
assert_eq!(map.0, [0xff, 0x7f, 0xff]);
}
#[test]
#[should_panic(
expected = "Port 10 is beyond the maximum value Some(f) supported by this map"
)]
fn test_set_port_checked_out_of_range_3byte() {
let mut map = IOPermissionBitmap([0x00, 0x00, 0xff]);
map.set_port_checked(16, true);
}
#[test]
#[should_panic(
expected = "Port 8 is beyond the maximum value Some(7) supported by this map"
)]
fn test_set_port_checked_out_of_range_2byte() {
let mut map = IOPermissionBitmap([0x00, 0xff]);
map.set_port_checked(8, true);
}
#[test]
#[should_panic(
expected = "Port 0 is beyond the maximum value None supported by this map"
)]
fn test_set_port_checked_out_of_range_1byte() {
let mut map = IOPermissionBitmap([0xff]);
map.set_port_checked(0, true);
}
#[test]
#[should_panic(
expected = "Port 0 is beyond the maximum value None supported by this map"
)]
fn test_set_port_checked_out_of_range_empty() {
let mut map = IOPermissionBitmap([]);
map.set_port_checked(0, true);
}
}