1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
//! Support for protected mode operation.
//!
//! This includes the minimal support for segmented memory and hardware task management
//! that is required to operate in protected mode with a flat memory model.

use core::arch::asm;
use core::fmt;
use core::num::NonZeroU16;
use static_assertions::const_assert_eq;
use tartan_bitfield::{
    bitfield, bitfield_accessors, bitfield_without_debug, get_bit, set_bit, Bitfield,
};
use tartan_c_enum::c_enum;

#[cfg(doc)]
use super::FlagRegister;
#[cfg(doc)]
use crate::x86_64::protection::TaskStateSegmentHeader;
#[cfg(doc)]
use crate::x86_64::ExtendedFeatureEnableRegister;


/// `GDTR`: Points to the memory range of the global descriptor table (GDT).
#[repr(C, packed)]
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub struct GlobalDescriptorTableRegister {
    /// The inclusive maximum address offset (i.e., size - 1) of the descriptor table.
    pub limit: u16,
    /// Base address of the descriptor table
    pub address: usize,
}

impl GlobalDescriptorTableRegister {
    /// Retrieve the current value of this register
    pub fn get() -> Self {
        let mut value = Self::default();
        unsafe {
            asm!(
                "sgdt [{0}]",
                in(reg) &mut value,
            );
        }
        value
    }

    /// Update the register to the given value.
    ///
    /// # Safety
    /// This register fundamentally affects memory accesses and can have an impact on
    /// memory safety.
    pub unsafe fn set(value: &Self) {
        asm!(
            "lgdt [{0}]",
            in(reg) value,
        );
    }

    /// Update the global descriptor table pointer and all segment registers.
    ///
    /// # Safety
    /// This register fundamentally affects memory accesses and can have an impact on
    /// memory safety.
    #[allow(named_asm_labels)]
    pub unsafe fn set_with_segments(
        gdt_pointer: &Self,
        code_selector: Selector,
        data_selector: Selector,
    ) {
        // TODO: Disable interrupts?

        #[cfg(target_arch = "x86")]
        asm!(
            "
            // Set the global descriptor table register
            lgdt [{gdt_pointer}]

            // Update the data segment selectors
            mov ds, {data_selector:e}
            mov es, {data_selector:e}
            mov fs, {data_selector:e}
            mov gs, {data_selector:e}
            mov ss, {data_selector:e}

            // Update the code segment selector. Directly loading the CS register doesn't
            // work, so we use a far return. The 'return' is really a jump to the next
            // instruction using a far pointer we push onto the stack, consisting of:
            //   * [rsp]     = 32-bit offset
            //   * [rsp + 4] = 32-bit segment selector (zero-extended from 16 bits)
            push {code_selector:e}
            mov eax, offset .dummy_target
            push eax
            retf
        .dummy_target:
            ",
            gdt_pointer = in(reg) gdt_pointer,
            data_selector = in(reg) u16::from(data_selector),
            code_selector = in(reg) u16::from(code_selector),
            out("eax") _,
        );

        #[cfg(target_arch = "x86_64")]
        asm!(
            "
            // Set the global descriptor table register
            lgdt [{gdt_pointer}]

            // Update the data segment selectors
            mov ds, {data_selector:r}
            mov es, {data_selector:r}
            mov fs, {data_selector:r}
            mov gs, {data_selector:r}
            mov ss, {data_selector:r}

            // Update the code segment selector. Directly loading the CS register doesn't
            // work, so we use a far return. The 'return' is really a jump to the next
            // instruction using a far pointer we push onto the stack, consisting of:
            //   * [rsp]     = 64-bit offset
            //   * [rsp + 8] = 64-bit segment selector (zero-extended from 16 bits)
            push {code_selector:r}
            lea rax, [rip + .dummy_target]
            push rax
            rex64 retf
        .dummy_target:
            ",
            gdt_pointer = in(reg) gdt_pointer,
            data_selector = in(reg) u16::from(data_selector),
            code_selector = in(reg) u16::from(code_selector),
            out("rax") _,
        );
    }
}


/// `LDTR`: Contains a [`Selector`] referencing a [`SegmentDescriptor`] that points to the
/// the local descriptor table (LDT).
///
/// Note that this type cannot be instantiated. It simply serves as a namespace for the
/// [`get`](Self::get) and [`set`](Self::set) methods, which work on a [`Selector`]
/// instance.
#[allow(clippy::empty_enum)]
pub enum LocalDescriptorTableRegister {}

impl LocalDescriptorTableRegister {
    /// Retrieve the current value of this register
    pub fn get() -> Selector {
        let mut value = Selector(0);
        unsafe {
            asm!(
                "sldt {0:x}",
                out(reg) value.0,
            );
        }
        value
    }

    /// Update the register with the value in this struct.
    ///
    /// The value must point to an entry in the global descriptor table
    /// ([`local`](Selector::local) == `false`) with the
    /// [`SystemDescriptorType::LocalDescriptorTable`] type.
    ///
    /// # Safety
    /// This register fundamentally affects memory accesses and can have an impact on
    /// memory safety.
    pub unsafe fn set(selector: Selector) {
        asm!(
            "lldt {0:x}",
            in(reg) selector.0,
        );
    }

    /// Get a pointer to the [`SegmentDescriptor`] for the currently-loaded local
    /// descriptor table, using the value of this register.
    ///
    /// # Safety
    /// The LDTR must not loaded with a selector for a valid LDR segment descriptor. The
    /// returned pointer is only valid until the LDTR is modified.
    pub unsafe fn current_descriptor() -> *const SegmentDescriptor {
        let address = LocalDescriptorTableRegister::get().descriptor_address();
        address as *const SegmentDescriptor
    }
}


/// `TR`: Contains a [`Selector`] referencing a [`SegmentDescriptor`] that points to the
/// current task state segment (TSS).
///
/// Note that this type cannot be instantiated. It simply serves as a namespace for the
/// [`get`](Self::get) and [`set`](Self::set) methods, which work on a [`Selector`]
/// instance.
#[allow(clippy::empty_enum)]
pub enum TaskRegister {}

impl TaskRegister {
    /// Retrieve the current value of this register
    pub fn get() -> Selector {
        let mut value = Selector(0);
        unsafe {
            asm!(
                "str {0:x}",
                out(reg) value.0,
            );
        }
        value
    }

    /// Update the register with the provided selector value.
    ///
    /// The value must point to an entry in the global descriptor table
    /// ([`local`](Selector::local) == `false`) with one of the
    /// `SystemDescriptorType::TaskState*` types.
    ///
    /// # Safety
    /// This register fundamentally affects memory accesses and can have an impact on
    /// memory safety.
    pub unsafe fn set(selector: Selector) {
        asm!(
            "ltr {0:x}",
            in(reg) selector.0,
        );
    }
}


/// Standard segment registers (`CS`, `DS`, `SS`, etc.), which contain [`Selector`]s.
pub enum SegmentRegister {
    /// `CS` register, which controls instruction loading
    Code,
    /// `DS` register, which controls the default segment for load/store instructions
    Data,
    /// `SS` segment register, which controls the location of the stack pointer and stack
    /// push and pop instructions.
    Stack,
    /// `ES` segment register, which can be used as an additional data segment.
    Extra,
    /// `FS` segment register, which can be used as an additional data segment.
    ExtraF,
    /// `GS` segment register, which can be used as an additional data segment.
    ExtraG,
}

impl SegmentRegister {
    /// Retrieve the current value of this register
    pub fn get(self) -> Selector {
        let mut value = Selector(0);
        unsafe {
            match self {
                Self::Code => asm!("mov {0:x}, cs", out(reg) value.0),
                Self::Data => asm!("mov {0:x}, ds", out(reg) value.0),
                Self::Stack => asm!("mov {0:x}, ss", out(reg) value.0),
                Self::Extra => asm!("mov {0:x}, es", out(reg) value.0),
                Self::ExtraF => asm!("mov {0:x}, fs", out(reg) value.0),
                Self::ExtraG => asm!("mov {0:x}, gs", out(reg) value.0),
            }
        }
        value
    }

    /// Update the register with the provided selector value.
    ///
    /// # Safety
    /// This register fundamentally affects memory accesses and can have an impact on
    /// memory safety.
    pub unsafe fn set(self, selector: Selector) {
        match self {
            Self::Code => asm!("mov cs, {0:x}", in(reg) selector.0),
            Self::Data => asm!("mov ds, {0:x}", in(reg) selector.0),
            Self::Stack => asm!("mov ss, {0:x}", in(reg) selector.0),
            Self::Extra => asm!("mov es, {0:x}", in(reg) selector.0),
            Self::ExtraF => asm!("mov fs, {0:x}", in(reg) selector.0),
            Self::ExtraG => asm!("mov gs, {0:x}", in(reg) selector.0),
        }
    }
}


bitfield! {
    /// A reference to an entry in a segment descriptor table.
    ///
    /// Used as the value of the segment registers `CS`, `DS`, etc. as well as the
    /// [`LocalDescriptorTableRegister`] and [`TaskRegister`].
    pub struct Selector(u16) {
        /// `RPL`: The privilege level "requested" when accessing the referenced segment.
        ///
        /// This may be different than the current privilege level (CPL), in which case
        /// the access must allowed for *both* the CPL and RPL. This is intended to allow
        /// OS code to limit its privileges when executing on behalf of user code.
        [0..2] pub privilege_level: u8,

        /// Indicates that this selector references a descriptor in the local descriptor
        /// table (LDT). Otherwise, it references the global descriptor table (GDT).
        [2] pub local,
    }
}

impl Selector {
    const OFFSET_MASK: u16 = 0xfff8;

    /// Create a new selector with the given field values
    pub const fn new(offset: u16, privilege_level: u8, local: bool) -> Self {
        // TODO: Rework bitfield crate to allow creating in const contexts
        let value = offset & Self::OFFSET_MASK
            | (privilege_level & 0b11) as u16
            | (local as u16) << 2;
        Self(value)
    }

    /// Create a null selector
    pub const fn null() -> Self {
        Self(0)
    }

    /// The offset of the referenced segment entry in the descriptor table.
    pub fn offset(self) -> u16 {
        self.0 & Self::OFFSET_MASK
    }

    /// Update the offset of the referenced entry in the descriptor table.
    ///
    /// # Panics
    /// Panics if the new offset is not aligned on an 8-byte boundary.
    pub fn set_offset(&mut self, offset: u16) {
        assert!(
            offset & !Self::OFFSET_MASK == 0,
            "Descriptor offset {offset} is not aligned on an 8-byte boundary"
        );
        self.0 &= !Self::OFFSET_MASK;
        self.0 |= offset;
    }

    /// Calculate the address of the descriptor referenced by this selector
    pub fn descriptor_address(self) -> usize {
        let table_address = if self.local() {
            let local_table =
                unsafe { &*(LocalDescriptorTableRegister::current_descriptor()) };
            local_table.address()
        } else {
            GlobalDescriptorTableRegister::get().address
        };
        table_address + self.offset() as usize
    }
}


/// Settings common to [`SegmentDescriptor`]s and [`GateDescriptor`]s.
pub trait DescriptorFlags: Bitfield<u32> {
    bitfield_accessors! {
        /// If this is a system descriptor, indicates which type.
        ///
        /// Only applies if [`is_application`](Self::is_application) is false.
        [ 8..12] system_type: u8 as SystemDescriptorType,

        /// The processor sets this bit whenever a segment register points to this
        /// segment.
        ///
        /// The process never resets this itself, but it can be cleared manually.
        ///
        /// Only applies if [`is_application`](Self::is_application) is true.
        [ 8] application_accessed,

        /// If this is a code descriptor, indicates that the segment can be read.
        /// Otherwise, it is execute-only.
        ///
        /// Only applies if [`is_application`](Self::is_application) and
        /// [`is_code`](Self::is_code) are true.
        [ 9] code_readable,

        /// If this is a data descriptor, indicates that this segment is writable.
        ///
        /// Required for stack segments.
        ///
        /// Only applies if [`is_application`](Self::is_application) is true and
        /// [`code_descriptor`](Self::is_code) is false.
        [ 9] data_writable,

        /// If this is a code descriptor, indicates that this segment can be executed
        /// with lower privileges than [`privilege_level`](Self::privilege_level).
        ///
        /// Only applies if [`is_application`](Self::is_application) and
        /// [`is_code`](Self::is_code) are true.
        [10] code_conforming,

        /// If this is a data descriptor, indicates that the segment expands toward lower
        /// addresses (stack-like) if its limit is changed.
        ///
        /// Only applies if [`is_application`](Self::is_application) is true and
        /// [`is_code`](Self::is_code) is false.
        [10] data_expand_down,

        /// Indicates whether this is a code (true) or data (false) descriptor.
        ///
        /// Only applies if [`is_application`](Self::is_application) is true.
        [11] is_code,

        /// `S`: Indicates that this is an application section descriptor if true.
        /// Otherwise, this is a system descriptor.
        [12] is_application,

        /// `DPL`: The privilege level associated with the segment.
        ///
        /// This has several meanings depending on the segment type:
        ///   * For stack segments, this is the *exact* privilege level required to use
        ///     the segment as a stack.
        ///   * For data segments, this is the minimum privilege (maximum number) required
        ///     to access the segment.
        ///   * For call gates, this is the minimum privilege (maximum number) required to
        ///     use the gate.
        ///   * For code segments:
        ///     * If the segment is accessed through a call gate _or_
        ///       [`code_conforming`](Self::code_conforming) is true, this is the
        ///       *maximum* privilege level (minimum number) that can execute the code.
        ///     * Otherwise, it is the *exact* privilege level required to execute the
        ///       code.
        [13..15] privilege_level: u8,

        /// `P`: Indicates that the segment is defined.
        [15] present,

        /// `L`: If this is a code segment, indicates that it should be executed in 64-bit
        /// mode.
        ///
        /// Mutually exclusive with [`mode_32`](Self::mode_32).
        ///
        /// Only applies if all of the following are true:
        ///   * [`is_application`](Self::is_application)
        ///   * [`is_code`](Self::is_code)
        ///   * [`ExtendedFeatureEnableRegister::long_mode_active`]
        #[cfg(any(target_arch = "x86_64", doc))]
        #[doc(cfg(target_arch = "x86_64"))]
        [21] code_mode_64,

        /// `D`/`B`: Indicates that the segment uses 32-bit mode. Otherwise, it is 16-bit,
        /// unless [`code_mode_64`](Self::code_mode_64) is set.
        ///
        /// Besides the address/operand sizes for instructions in code segments, this also
        /// affects the upper bound of stack-like data segments with the
        /// [`data_expand_down`](Self::data_expand_down) flag set.
        ///
        /// Only applies if [`is_application`](Self::is_application) is true.
        [22] application_mode_32,
    }

    /// Indicates that this is a [`GateDescriptor`].
    fn is_gate(&self) -> bool {
        !self.is_application() && self.system_type().is_gate()
    }
}


c_enum! {
    /// Discriminate types of segment descriptors that are not code or data.
    pub enum SystemDescriptorType(u8) {
        /// A [`SegmentDescriptor`] for a 16-bit task state segment (TSS) that is not
        /// currently running or waiting on a call to another task.
        #[cfg(any(target_arch = "x86", doc))]
        #[doc(cfg(target_arch = "x86"))]
        TaskStateAvailable16Bit = 1,

        /// A [`SegmentDescriptor`] for a segment that contains a local descriptor table.
        LocalDescriptorTable = 2,

        /// A [`SegmentDescriptor`] for a 16-bit task state segment (TSS) that is either
        /// running or waiting on a call to another task.
        #[cfg(any(target_arch = "x86", doc))]
        #[doc(cfg(target_arch = "x86"))]
        TaskStateBusy16Bit = 3,

        /// A [`GateDescriptor`] for a call to 16-bit code.
        #[cfg(any(target_arch = "x86", doc))]
        #[doc(cfg(target_arch = "x86"))]
        CallGate16Bit = 4,

        /// A [`GateDescriptor`] for task switching.
        #[cfg(any(target_arch = "x86", doc))]
        #[doc(cfg(target_arch = "x86"))]
        TaskGate = 5,

        /// A [`GateDescriptor`] for a 16-bit interrupt handler.
        #[cfg(any(target_arch = "x86", doc))]
        #[doc(cfg(target_arch = "x86"))]
        InterruptGate16Bit = 6,

        /// A [`GateDescriptor`] for a 16-bit trap handler.
        #[cfg(any(target_arch = "x86", doc))]
        #[doc(cfg(target_arch = "x86"))]
        TrapGate16Bit = 7,

        /// A [`SegmentDescriptor`] for a 32/64-bit task state segment (TSS) that is not
        /// currently running or waiting on a call to another task.
        TaskStateAvailable = 9,

        /// A [`SegmentDescriptor`] for a 32/64-bit task state segment (TSS) that is
        /// either running or waiting on a call to another task.
        TaskStateBusy = 11,

        /// A [`GateDescriptor`] for a call to 32/64-bit code.
        CallGate = 12,

        /// A [`GateDescriptor`] for a 32/64-bit interrupt handler.
        InterruptGate = 14,

        /// A [`GateDescriptor`] for a 32/64-bit interrupt handler.
        ///
        /// A trap gate works identically to an interrupt gate, except that the processor
        /// does not automatically clear [`FlagRegister::interrupt_enabled`] when it
        /// invokes the handler through a trap gate.
        TrapGate = 15,
    }
}

impl SystemDescriptorType {
    /// Indicates that this is a [`GateDescriptor`].
    pub fn is_gate(self) -> bool {
        #[cfg(target_arch = "x86")]
        {
            matches!(
                self,
                Self::CallGate
                    | Self::CallGate16Bit
                    | Self::InterruptGate
                    | Self::InterruptGate16Bit
                    | Self::TrapGate
                    | Self::TrapGate16Bit
                    | Self::TaskGate
            )
        }

        #[cfg(target_arch = "x86_64")]
        {
            matches!(self, Self::CallGate | Self::InterruptGate | Self::TrapGate)
        }
    }
}



/// Generic entry in a global/local/interrupt descriptor table. Can be a
/// [`SegmentDescriptor`] or [`GateDescriptor`], depending on the type flags.
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct GenericDescriptor {
    lower: u32,

    /// Common descriptor settings.
    pub flags: GenericDescriptorFlags,

    #[cfg(any(target_arch = "x86_64", doc))]
    #[doc(cfg(target_arch = "x86_64"))]
    upper: u32,

    // NOTE: In some cases, The processor verifies that this isn't a 32-bit descriptor by
    // looking for the type field (bits 8..13) in this DWord and making sure it is 0.
    #[cfg(any(target_arch = "x86_64", doc))]
    #[doc(cfg(target_arch = "x86_64"))]
    _reserved: u32,
}

#[cfg(target_arch = "x86")]
const_assert_eq!(8, core::mem::size_of::<GenericDescriptor>());

#[cfg(target_arch = "x86_64")]
const_assert_eq!(16, core::mem::size_of::<GenericDescriptor>());


bitfield_without_debug! {
    /// Settings for [`GenericDescriptor`]s.
    pub struct GenericDescriptorFlags(u32) {}
}

impl fmt::Debug for GenericDescriptorFlags {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut struct_fmt = f.debug_struct("GenericDescriptorFlags");
        struct_fmt.field("<value>", &self.0);
        self.fmt_fields(&mut struct_fmt);
        <Self as DescriptorFlags>::fmt_fields(self, &mut struct_fmt);
        struct_fmt.finish()
    }
}

impl DescriptorFlags for GenericDescriptorFlags {}

/// An entry in a segment descriptor table that defines a new segment. This includes code,
/// data, task state (TSS), and local descriptor table (LDT) segments.
///
/// Notes on the size of this structure:
///   * In 32-bit mode, this structure is always 8 bytes and contains a 32-bit base
///     address.
///   * In 64-bit mode:
///     * Task state and local descriptor table segment descriptors are expanded to 16
///       bytes with 64-bit base addresses.
///     * From the processor's perspective, code and data segments remain 8 bytes and the
///       address and limit are both ignored. However, this structure is still defined as
///       16 bytes. This is fine, since the first 8 bytes are compatible and the rest will
///       be ignored.
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct SegmentDescriptor {
    lower: u32,

    /// Common segment descriptor settings.
    pub flags: SegmentDescriptorFlags,

    #[cfg(any(target_arch = "x86_64", doc))]
    #[doc(cfg(target_arch = "x86_64"))]
    upper: u32,

    // NOTE: In some cases, The processor verifies that this isn't a 32-bit descriptor by
    // looking for the type field (bits 8..13) in this DWord and making sure it is 0.
    #[cfg(any(target_arch = "x86_64", doc))]
    #[doc(cfg(target_arch = "x86_64"))]
    _reserved: u32,
}

#[cfg(target_arch = "x86")]
const_assert_eq!(8, core::mem::size_of::<SegmentDescriptor>());

#[cfg(target_arch = "x86_64")]
const_assert_eq!(16, core::mem::size_of::<SegmentDescriptor>());

impl SegmentDescriptor {
    /// The maximum supported value of the [`limit`](Self::limit) field (20 bits).
    pub const LIMIT_MAX: u32 = 0x000f_ffff;
    const LIMIT_MASK_LOWER: u32 = 0x0000_ffff;
    const LIMIT_MASK_FLAGS: u32 = 0x000f_0000;

    const ADDRESS_MASK_LOWER: u32 = 0xffff_0000;
    const ADDRESS_MASK_FLAGS_LOWER: u32 = 0x0000_00ff;
    const ADDRESS_MASK_FLAGS_UPPER: u32 = 0xff00_0000;

    /// Create a zero-initialized descriptor
    pub const fn new() -> Self {
        #[cfg(target_arch = "x86")]
        let value = Self { lower: 0, flags: SegmentDescriptorFlags(0) };

        #[cfg(target_arch = "x86_64")]
        let value =
            Self { lower: 0, flags: SegmentDescriptorFlags(0), upper: 0, _reserved: 0 };

        value
    }

    /// Base virtual address of the segment, to which offsets are added.
    ///
    /// In 64-bit mode, this is ignored and assumed to be 0 for code and data segments,
    /// but it still applies to task state and local descriptor table segments.
    pub fn address(self) -> usize {
        let mut address = ((self.lower & Self::ADDRESS_MASK_LOWER) >> 16) as usize;
        address |= ((Self::ADDRESS_MASK_FLAGS_LOWER & self.flags.value()) << 16) as usize;
        address |= (Self::ADDRESS_MASK_FLAGS_UPPER & self.flags.value()) as usize;
        #[cfg(target_arch = "x86_64")]
        {
            address |= (self.upper as usize) << 32;
        }
        address
    }

    /// Update the base address.
    pub fn set_address(&mut self, address: usize) {
        #![allow(clippy::cast_possible_truncation)]

        self.lower &= !Self::ADDRESS_MASK_LOWER;
        self.lower |= (address << 16) as u32 & Self::ADDRESS_MASK_LOWER;

        self.flags.0 &= !Self::ADDRESS_MASK_FLAGS_LOWER & !Self::ADDRESS_MASK_FLAGS_UPPER;
        self.flags.0 |= Self::ADDRESS_MASK_FLAGS_LOWER & (address >> 16) as u32;
        self.flags.0 |= Self::ADDRESS_MASK_FLAGS_UPPER & address as u32;

        #[cfg(target_arch = "x86_64")]
        {
            self.upper = (address >> 32) as u32;
        }
    }

    /// The "limit" of the segment, which is a maximum or minimum offset from the base
    /// address.
    ///
    /// If this is a stack-like data segment
    /// ([`data_expand_down`](DescriptorFlags::data_expand_down)), then this value is the
    /// *exclusive minimum* offset value. Otherwise, this is the *inclusive maximum*
    /// offset value (i.e., size - 1).
    ///
    /// This value may be in bytes or in 4KB units, depending on
    /// [`flags.granularity`](SegmentDescriptorFlags::granularity).
    ///
    /// In 64-bit mode, this is ignored (all limit checks are disabled) for code and data
    /// segments, but it still applies to task state and local descriptor table segments.
    pub fn limit(self) -> u32 {
        let mut limit = self.lower & Self::LIMIT_MASK_LOWER;
        limit |= self.flags.value() & Self::LIMIT_MASK_FLAGS;
        limit
    }

    /// Update the segment limit.
    ///
    /// # Panics
    /// Panics if the limit is greater than [`LIMIT_MAX`](Self::LIMIT_MAX).
    pub fn set_limit(&mut self, limit: u32) {
        assert!(limit <= Self::LIMIT_MAX, "Segment limit too large: {limit:#x}");

        self.lower &= !Self::LIMIT_MASK_LOWER;
        self.lower |= Self::LIMIT_MASK_LOWER & limit;

        self.flags.0 &= !Self::LIMIT_MASK_FLAGS;
        self.flags.0 |= Self::LIMIT_MASK_FLAGS & limit;
    }
}

impl fmt::Debug for SegmentDescriptor {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("SegmentDescriptor")
            .field("address", &self.address())
            .field("limit", &self.limit())
            .field("flags", &self.flags)
            .finish_non_exhaustive()
    }
}

impl Default for SegmentDescriptor {
    fn default() -> Self {
        Self::new()
    }
}


bitfield_without_debug! {
    /// Settings for [`SegmentDescriptor`]s.
    pub struct SegmentDescriptorFlags(u32) {
        /// `AVL`: Ignored bit that can be used by the operating system.
        ///
        /// Does not apply to call gates.
        [20] pub os_defined,

        /// `G`: Indicates that the segment limit is in units of 4KB. Otherwise, it is in
        /// bytes.
        [23] pub granularity,
    }
}

impl fmt::Debug for SegmentDescriptorFlags {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut struct_fmt = f.debug_struct("SegmentDescriptorFlags");
        struct_fmt.field("<value>", &self.0);
        self.fmt_fields(&mut struct_fmt);
        <Self as DescriptorFlags>::fmt_fields(self, &mut struct_fmt);
        struct_fmt.finish()
    }
}

impl DescriptorFlags for SegmentDescriptorFlags {}


/// An entry in a segment descriptor table that points to an existing segment rather than
/// defining a new one.
///
/// This includes:
///   * Call gates, which allow controlled access to routines defined in a code segment
///     with a different priority level or word size.
///   * Interrupt and trap gates, which define handlers for interrupt vectors.
///   * Task gates, which support hardware task switching. These are not supported in
///     64-bit mode.
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct GateDescriptor {
    lower: u32,

    /// Common gate descriptor settings.
    pub flags: GateDescriptorFlags,

    #[cfg(any(target_arch = "x86_64", doc))]
    #[doc(cfg(target_arch = "x86_64"))]
    upper: u32,

    // NOTE: In some cases, The processor verifies that this isn't a 32-bit descriptor by
    // looking for the type field (bits 8..13) in this DWord and making sure it is 0.
    #[cfg(any(target_arch = "x86_64", doc))]
    #[doc(cfg(target_arch = "x86_64"))]
    _reserved: u32,
}

#[cfg(target_arch = "x86")]
const_assert_eq!(8, core::mem::size_of::<GateDescriptor>());

#[cfg(target_arch = "x86_64")]
const_assert_eq!(16, core::mem::size_of::<GateDescriptor>());

impl GateDescriptor {
    const SELECTOR_MASK: u32 = 0xffff_0000;
    const OFFSET_MASK_LOWER: u32 = 0x0000_ffff;
    const OFFSET_MASK_UPPER: u32 = 0xffff_0000;

    /// Create a zero-initialized descriptor
    pub const fn new() -> Self {
        #[cfg(target_arch = "x86")]
        let value = Self { lower: 0, flags: GateDescriptorFlags(0) };

        #[cfg(target_arch = "x86_64")]
        let value =
            Self { lower: 0, flags: GateDescriptorFlags(0), upper: 0, _reserved: 0 };

        value
    }

    /// Selector that points to the code or task state segment to be accessed through this
    /// gate.
    ///
    /// For call, interrupt, and trap gates, this points to the code segment that contains
    /// the routine to be executed. For task gates, this points to a task state segment
    /// representing the task to activate.
    pub fn selector(self) -> Selector {
        #![allow(clippy::cast_possible_truncation)]
        Selector(((self.lower & Self::SELECTOR_MASK) >> 16) as u16)
    }

    /// Update the selector pointing to the segment to be accessed through this gate.
    pub fn set_selector(&mut self, selector: Selector) {
        self.lower &= !Self::SELECTOR_MASK;
        self.lower |= Self::SELECTOR_MASK & u32::from(selector.value()) << 16;
    }

    /// Offset of the entry point in code segment referenced by
    /// [`selector`](Self::selector).
    ///
    /// Only applies to call, interrupt, and trap gates.
    pub fn entry_point_offset(self) -> usize {
        let mut offset = (self.lower & Self::OFFSET_MASK_LOWER) as usize;
        offset |= (self.flags.value() & Self::OFFSET_MASK_UPPER) as usize;
        #[cfg(target_arch = "x86_64")]
        {
            offset |= (self.upper as usize) << 32;
        }
        offset
    }

    /// Update the offset of the entry point within the referenced code segment.
    pub fn set_entry_point_offset(&mut self, offset: usize) {
        #![allow(clippy::cast_possible_truncation)]

        self.lower &= !Self::OFFSET_MASK_LOWER;
        self.lower |= Self::OFFSET_MASK_LOWER & (offset as u32);

        self.flags.0 &= !Self::OFFSET_MASK_UPPER;
        self.flags.0 |= Self::OFFSET_MASK_UPPER & (offset as u32);

        #[cfg(target_arch = "x86_64")]
        {
            self.upper = (offset >> 32) as u32;
        }
    }
}

impl fmt::Debug for GateDescriptor {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("GateDescriptor")
            .field("selector", &self.selector())
            .field("entry_point_offset", &self.entry_point_offset())
            .field("flags", &self.flags)
            .finish_non_exhaustive()
    }
}

impl Default for GateDescriptor {
    fn default() -> Self {
        Self::new()
    }
}


bitfield_without_debug! {
    /// Settings for [`GateDescriptor`]s.
    pub struct GateDescriptorFlags(u32) {
        /// Number of stack parameters to copy if the code segment referenced by a call
        /// gate uses a different stack segment.
        ///
        /// Only applies to call gates.
        [0..4] pub call_param_count: u8,

        /// One-based index of the
        /// [`interrupt_stack`](x86_64::TaskStateSegment::interrupt_stack) pointer to use
        /// when handling an interrupt though this gate.
        ///
        /// If this value is zero, then the stack segment is set to null.
        ///
        /// Only applies to interrupt and trap gates.
        #[cfg(any(target_arch = "x86_64", doc))]
        #[doc(cfg(target_arch = "x86_64"))]
        [0..2] pub interrupt_stack_index: u8,
    }
}

impl fmt::Debug for GateDescriptorFlags {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut struct_fmt = f.debug_struct("GateDescriptorFlags");
        struct_fmt.field("<value>", &self.0);
        self.fmt_fields(&mut struct_fmt);
        <Self as DescriptorFlags>::fmt_fields(self, &mut struct_fmt);
        struct_fmt.finish()
    }
}

impl DescriptorFlags for GateDescriptorFlags {}


/// Bitmap that controls which I/O port addresses are covered by privilege checks.
///
/// For bit `N` of this structure (bit `N mod 8` of byte `floor(N / 8)`), up to
/// [`max_port`](Self::max_port):
///   * If the bit is set, then access to I/O port `N` is not allowed at privilege levels
///     below [`FlagRegister::io_privilege_level`] (greater numbers).
///   * If the bit is unset, then access to I/O port `N` is allowed from any privilege
///     level.
///
/// This structure is stored in the task state segment (TSS) at a variable location
/// indicated by its
/// [`io_permission_map_offset`](TaskStateSegmentHeader::io_permission_map_offset). It is
/// also variable-sized: if there are fewer than [`MAX_SIZE`](Self::MAX_SIZE) bytes
/// between the start of the permission map and the [`limit`](SegmentDescriptor::limit) of
/// the containing TSS, then the processor acts as though the bits for all ports past
/// `max_port_for_size(limit - offset)` are set.
#[derive(Debug, PartialEq, Eq)]
pub struct IOPermissionBitmap<T = [u8]>(T)
where
    T: AsRef<[u8]> + AsMut<[u8]> + Eq + ?Sized;

impl IOPermissionBitmap {
    /// Size in bytes required to map all I/O ports
    pub const MAX_SIZE: usize = Self::required_size(u16::MAX);

    /// Calculate the size in bytes of a map that has bits for ports up to and including
    /// `max_port`.
    ///
    /// Note that because of the way the processor reads this map, it requires an extra
    /// byte at the end that does not map any ports.
    ///
    /// ```
    /// # use tartan_arch::x86_common::protection::IOPermissionBitmap;
    /// #
    /// assert_eq!(IOPermissionBitmap::required_size(0), 2);
    /// assert_eq!(IOPermissionBitmap::required_size(7), 2);
    /// assert_eq!(IOPermissionBitmap::required_size(8), 3);
    /// assert_eq!(IOPermissionBitmap::required_size(0xa587), 0x14b2);
    /// assert_eq!(IOPermissionBitmap::required_size(0xffff), 0x2001);
    /// ```
    pub const fn required_size(max_port: u16) -> usize {
        max_port as usize / 8 + 2
    }

    /// Calculate the last I/O port that is covered by a map of the given size.
    ///
    /// Note that because of the way the processor reads this map, it requires an extra
    /// byte at the end that does not map any ports. Therefore, empty or single-byte maps
    /// cannot represent _any_ ports, and this function returns `None` in those cases.
    ///
    /// ```
    /// # use core::num::NonZeroU16;
    /// # use tartan_arch::x86_common::protection::IOPermissionBitmap;
    /// #
    /// assert_eq!(IOPermissionBitmap::max_port_for_size(0), None);
    /// assert_eq!(IOPermissionBitmap::max_port_for_size(1), None);
    /// assert_eq!(IOPermissionBitmap::max_port_for_size(2), NonZeroU16::new(7));
    /// assert_eq!(IOPermissionBitmap::max_port_for_size(4), NonZeroU16::new(23));
    /// assert_eq!(IOPermissionBitmap::max_port_for_size(0x2000), NonZeroU16::new(0xfff7));
    /// assert_eq!(IOPermissionBitmap::max_port_for_size(0x2001), NonZeroU16::new(0xffff));
    /// assert_eq!(IOPermissionBitmap::max_port_for_size(0x2002), NonZeroU16::new(0xffff));
    /// assert_eq!(IOPermissionBitmap::max_port_for_size(usize::MAX), NonZeroU16::new(0xffff));
    /// ```
    pub const fn max_port_for_size(size: usize) -> Option<NonZeroU16> {
        #[allow(clippy::cast_possible_truncation)]
        if size <= 1 {
            None
        } else if size >= Self::MAX_SIZE {
            NonZeroU16::new(u16::MAX)
        } else {
            NonZeroU16::new((((size - 1) * 8) - 1) as u16)
        }
    }
}

impl<T> IOPermissionBitmap<T>
where
    T: AsRef<[u8]> + AsMut<[u8]> + Eq + ?Sized,
{
    /// The number of bytes in this structure.
    pub fn size(&self) -> usize {
        self.0.as_ref().len()
    }

    /// The last I/O port that is covered by this map. The bits for all ports greater than
    /// this value are assumed to be set.
    pub fn max_port(&self) -> Option<NonZeroU16> {
        IOPermissionBitmap::max_port_for_size(self.size())
    }

    fn is_port_mapped(&self, port: u16) -> bool {
        match self.max_port() {
            None => false,
            Some(max) => port <= max.get(),
        }
    }

    /// Get the value in this bitmap that indicates whether the port should be subject to
    /// privilege level checks.
    ///
    /// If the given port is beyond the range covered by this map
    /// [`max_port`](Self::max_port), this will return true, in line with the processor's
    /// behavior.
    pub fn is_port_checked(&self, port: u16) -> bool {
        if self.is_port_mapped(port) {
            let byte = (port / 8) as usize;
            #[allow(clippy::cast_possible_truncation)]
            let bit = (port % 8) as u8;
            get_bit(self.0.as_ref()[byte], bit)
        } else {
            // All remaining ports are assumed to be covered by privilege checks
            true
        }
    }

    /// Set the value in this bitmap that indicates whether the port should be subject
    /// to privilege level checks.
    ///
    /// # Panics
    /// Panics if the given port is greater than [`max_port`](Self::max_port).
    pub fn set_port_checked(&mut self, port: u16, value: bool) {
        assert!(
            self.is_port_mapped(port),
            "Port {:x} is beyond the maximum value {:x?} supported by this map",
            port,
            self.max_port(),
        );
        let byte = (port / 8) as usize;
        #[allow(clippy::cast_possible_truncation)]
        let bit = (port % 8) as u8;
        let map = self.0.as_mut();
        map[byte] = set_bit(map[byte], bit, value);
    }
}


#[cfg(test)]
mod test {
    use super::*;
    use core::mem;

    #[cfg(target_arch = "x86_64")]
    fn seg_desc_from_bytes(bytes: [u8; 16]) -> SegmentDescriptor {
        unsafe { mem::transmute(bytes) }
    }

    #[cfg(target_arch = "x86_64")]
    fn bytes_from_seg_desc(desc: SegmentDescriptor) -> [u8; 16] {
        unsafe { mem::transmute(desc) }
    }

    #[test]
    #[cfg(target_arch = "x86_64")]
    #[rustfmt::skip]
    fn test_descriptor_limit() {
        assert_eq!(0x0000_0000, seg_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]).limit());
        assert_eq!(0x0000_0000, seg_desc_from_bytes([
            0x00, 0x00, 0xff, 0xff,
            0xff, 0xff, 0xf0, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]).limit());
        assert_eq!(0x000f_ffff, seg_desc_from_bytes([
            0xff, 0xff, 0x00, 0x00,
            0x00, 0x00, 0x0f, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]).limit());
        assert_eq!(0x000a_bcde, seg_desc_from_bytes([
            0xde, 0xbc, 0x74, 0x48,
            0x52, 0x93, 0x8a, 0x51,
            0x72, 0x89, 0x73, 0x21,
            0x28, 0x05, 0x86, 0x85,
        ]).limit());

        let mut desc = seg_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_limit(0x000f_ffff);
        assert_eq!(bytes_from_seg_desc(desc), [
            0xff, 0xff, 0x00, 0x00,
            0x00, 0x00, 0x0f, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);

        let mut desc = seg_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_limit(0x000a_bcde);
        assert_eq!(bytes_from_seg_desc(desc), [
            0xde, 0xbc, 0x00, 0x00,
            0x00, 0x00, 0x0a, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);

        let mut desc = seg_desc_from_bytes([
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
        desc.set_limit(0x0000_0000);
        assert_eq!(bytes_from_seg_desc(desc), [
            0x00, 0x00, 0xff, 0xff,
            0xff, 0xff, 0xf0, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);

        let mut desc = seg_desc_from_bytes([
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
        desc.set_limit(0x000a_bcde);
        assert_eq!(bytes_from_seg_desc(desc), [
            0xde, 0xbc, 0xff, 0xff,
            0xff, 0xff, 0xfa, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
    }

    #[test]
    #[should_panic(expected = "Segment limit too large: 0x100000")]
    #[cfg(target_arch = "x86_64")]
    #[rustfmt::skip]
    fn test_descriptor_limit_out_of_range() {
        let mut desc = seg_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_limit(0x0010_0000);
    }

    #[test]
    #[cfg(target_arch = "x86_64")]
    #[rustfmt::skip]
    fn test_descriptor_address() {
        assert_eq!(0x0000_0000_0000_0000_usize, seg_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]).address());
        assert_eq!(0x0000_0000_0000_0000_usize, seg_desc_from_bytes([
            0xff, 0xff, 0x00, 0x00,
            0x00, 0xff, 0xff, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0xff, 0xff, 0xff, 0xff,
        ]).address());
        assert_eq!(0xffff_ffff_ffff_ffff_usize, seg_desc_from_bytes([
            0x00, 0x00, 0xff, 0xff,
            0xff, 0x00, 0x00, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0x00, 0x00, 0x00, 0x00,
        ]).address());
        assert_eq!(0xaabb_ccdd_1122_3344_usize, seg_desc_from_bytes([
            0x8f, 0x97, 0x44, 0x33,
            0x22, 0x68, 0x5e, 0x11,
            0xdd, 0xcc, 0xbb, 0xaa,
            0xf8, 0x76, 0x89, 0xe5,
        ]).address());

        let mut desc = seg_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_address(0xffff_ffff_ffff_ffff_usize);
        assert_eq!(bytes_from_seg_desc(desc), [
            0x00, 0x00, 0xff, 0xff,
            0xff, 0x00, 0x00, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0x00, 0x00, 0x00, 0x00,
        ]);

        let mut desc = seg_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_address(0xaabb_ccdd_1122_3344_usize);
        assert_eq!(bytes_from_seg_desc(desc), [
            0x00, 0x00, 0x44, 0x33,
            0x22, 0x00, 0x00, 0x11,
            0xdd, 0xcc, 0xbb, 0xaa,
            0x00, 0x00, 0x00, 0x00,
        ]);

        let mut desc = seg_desc_from_bytes([
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
        desc.set_address(0x0000_0000_0000_0000_usize);
        assert_eq!(bytes_from_seg_desc(desc), [
            0xff, 0xff, 0x00, 0x00,
            0x00, 0xff, 0xff, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0xff, 0xff, 0xff, 0xff,
        ]);

        let mut desc = seg_desc_from_bytes([
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
        desc.set_address(0xaabb_ccdd_1122_3344_usize);
        assert_eq!(bytes_from_seg_desc(desc), [
            0xff, 0xff, 0x44, 0x33,
            0x22, 0xff, 0xff, 0x11,
            0xdd, 0xcc, 0xbb, 0xaa,
            0xff, 0xff, 0xff, 0xff,
        ]);
    }

    #[cfg(target_arch = "x86_64")]
    fn gate_desc_from_bytes(bytes: [u8; 16]) -> GateDescriptor {
        unsafe { mem::transmute(bytes) }
    }

    #[cfg(target_arch = "x86_64")]
    fn bytes_from_gate_desc(desc: GateDescriptor) -> [u8; 16] {
        unsafe { mem::transmute(desc) }
    }

    #[test]
    #[cfg(target_arch = "x86_64")]
    #[rustfmt::skip]
    fn test_descriptor_offset() {
        assert_eq!(0x0000_0000_0000_0000_usize, gate_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]).entry_point_offset());
        assert_eq!(0x0000_0000_0000_0000_usize, gate_desc_from_bytes([
            0x00, 0x00, 0xff, 0xff,
            0xff, 0xff, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0xff, 0xff, 0xff, 0xff,
        ]).entry_point_offset());
        assert_eq!(0xffff_ffff_ffff_ffff_usize, gate_desc_from_bytes([
            0xff, 0xff, 0x00, 0x00,
            0x00, 0x00, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0x00, 0x00, 0x00, 0x00,
        ]).entry_point_offset());
        assert_eq!(0xaabb_ccdd_1122_3344_usize, gate_desc_from_bytes([
            0x44, 0x33, 0x8f, 0x97,
            0x68, 0x5e, 0x22, 0x11,
            0xdd, 0xcc, 0xbb, 0xaa,
            0xf8, 0x76, 0x89, 0xe5,
        ]).entry_point_offset());

        let mut desc = gate_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_entry_point_offset(0xffff_ffff_ffff_ffff_usize);
        assert_eq!(bytes_from_gate_desc(desc), [
            0xff, 0xff, 0x00, 0x00,
            0x00, 0x00, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0x00, 0x00, 0x00, 0x00,
        ]);

        let mut desc = gate_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_entry_point_offset(0xaabb_ccdd_1122_3344_usize);
        assert_eq!(bytes_from_gate_desc(desc), [
            0x44, 0x33, 0x00, 0x00,
            0x00, 0x00, 0x22, 0x11,
            0xdd, 0xcc, 0xbb, 0xaa,
            0x00, 0x00, 0x00, 0x00,
        ]);

        let mut desc = gate_desc_from_bytes([
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
        desc.set_entry_point_offset(0x0000_0000_0000_0000_usize);
        assert_eq!(bytes_from_gate_desc(desc), [
            0x00, 0x00, 0xff, 0xff,
            0xff, 0xff, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0xff, 0xff, 0xff, 0xff,
        ]);

        let mut desc = gate_desc_from_bytes([
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
        desc.set_entry_point_offset(0xaabb_ccdd_1122_3344_usize);
        assert_eq!(bytes_from_gate_desc(desc), [
            0x44, 0x33, 0xff, 0xff,
            0xff, 0xff, 0x22, 0x11,
            0xdd, 0xcc, 0xbb, 0xaa,
            0xff, 0xff, 0xff, 0xff,
        ]);
    }

    #[test]
    #[cfg(target_arch = "x86_64")]
    #[rustfmt::skip]
    fn test_descriptor_selector() {
        assert_eq!(Selector(0x0000), gate_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]).selector());
        assert_eq!(Selector(0x0000), gate_desc_from_bytes([
            0xff, 0xff, 0x00, 0x00,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]).selector());
        assert_eq!(Selector(0xffff), gate_desc_from_bytes([
            0x00, 0x00, 0xff, 0xff,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]).selector());
        assert_eq!(Selector(0xabcd), gate_desc_from_bytes([
            0x94, 0x82, 0xcd, 0xab,
            0x52, 0x93, 0x83, 0x51,
            0x72, 0x89, 0x73, 0x21,
            0x28, 0x05, 0x86, 0x85,
        ]).selector());

        let mut desc = gate_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_selector(0xffff.into());
        assert_eq!(bytes_from_gate_desc(desc), [
            0x00, 0x00, 0xff, 0xff,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);

        let mut desc = gate_desc_from_bytes([
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);
        desc.set_selector(0xabcd.into());
        assert_eq!(bytes_from_gate_desc(desc), [
            0x00, 0x00, 0xcd, 0xab,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00,
        ]);

        let mut desc = gate_desc_from_bytes([
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
        desc.set_selector(0x0000.into());
        assert_eq!(bytes_from_gate_desc(desc), [
            0xff, 0xff, 0x00, 0x00,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);

        let mut desc = gate_desc_from_bytes([
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
        desc.set_selector(0xabcd.into());
        assert_eq!(bytes_from_gate_desc(desc), [
            0xff, 0xff, 0xcd, 0xab,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff,
        ]);
    }

    #[test]
    #[allow(clippy::bool_assert_comparison)]
    fn test_is_port_checked() {
        let map = IOPermissionBitmap([]);
        assert_eq!(map.is_port_checked(0), true);
        assert_eq!(map.is_port_checked(1), true);
        assert_eq!(map.is_port_checked(u16::MAX), true);

        let map = IOPermissionBitmap([0xff]);
        assert_eq!(map.is_port_checked(0), true);
        assert_eq!(map.is_port_checked(1), true);
        assert_eq!(map.is_port_checked(8), true);
        assert_eq!(map.is_port_checked(u16::MAX), true);

        let map = IOPermissionBitmap([0x00, 0xff]);
        assert_eq!(map.is_port_checked(0), false);
        assert_eq!(map.is_port_checked(1), false);
        assert_eq!(map.is_port_checked(7), false);
        assert_eq!(map.is_port_checked(8), true);
        assert_eq!(map.is_port_checked(u16::MAX), true);

        let map = IOPermissionBitmap([0xaa, 0xff]);
        assert_eq!(map.is_port_checked(0), false);
        assert_eq!(map.is_port_checked(1), true);
        assert_eq!(map.is_port_checked(2), false);
        assert_eq!(map.is_port_checked(3), true);
        assert_eq!(map.is_port_checked(4), false);
        assert_eq!(map.is_port_checked(5), true);
        assert_eq!(map.is_port_checked(6), false);
        assert_eq!(map.is_port_checked(7), true);
        assert_eq!(map.is_port_checked(8), true);
        assert_eq!(map.is_port_checked(u16::MAX), true);

        let map = IOPermissionBitmap([0x55, 0xff]);
        assert_eq!(map.is_port_checked(0), true);
        assert_eq!(map.is_port_checked(1), false);
        assert_eq!(map.is_port_checked(2), true);
        assert_eq!(map.is_port_checked(3), false);
        assert_eq!(map.is_port_checked(4), true);
        assert_eq!(map.is_port_checked(5), false);
        assert_eq!(map.is_port_checked(6), true);
        assert_eq!(map.is_port_checked(7), false);
        assert_eq!(map.is_port_checked(8), true);
        assert_eq!(map.is_port_checked(u16::MAX), true);

        let map = IOPermissionBitmap([0xff, 0x00, 0xff]);
        assert_eq!(map.is_port_checked(0), true);
        assert_eq!(map.is_port_checked(7), true);
        assert_eq!(map.is_port_checked(8), false);
        assert_eq!(map.is_port_checked(15), false);
        assert_eq!(map.is_port_checked(16), true);
        assert_eq!(map.is_port_checked(u16::MAX), true);

        // The processor expects the last byte to be 0xff, and it doesn't map any ports.
        // For our purposes, we ignore it and treat it as though it were 0xff.
        let map = IOPermissionBitmap([0x00]);
        assert_eq!(map.is_port_checked(0), true);
        assert_eq!(map.is_port_checked(1), true);
        assert_eq!(map.is_port_checked(7), true);
        assert_eq!(map.is_port_checked(8), true);
        assert_eq!(map.is_port_checked(u16::MAX), true);

        let map = IOPermissionBitmap([0x00, 0x00]);
        assert_eq!(map.is_port_checked(0), false);
        assert_eq!(map.is_port_checked(1), false);
        assert_eq!(map.is_port_checked(7), false);
        assert_eq!(map.is_port_checked(8), true);
        assert_eq!(map.is_port_checked(15), true);
        assert_eq!(map.is_port_checked(16), true);
        assert_eq!(map.is_port_checked(u16::MAX), true);
    }

    #[test]
    fn test_set_port_checked() {
        let mut map = IOPermissionBitmap([0x00, 0x00, 0xff]);
        map.set_port_checked(0, true);
        assert_eq!(map.0, [0x01, 0x00, 0xff]);

        let mut map = IOPermissionBitmap([0x00, 0x00, 0xff]);
        map.set_port_checked(15, true);
        assert_eq!(map.0, [0x00, 0x80, 0xff]);

        let mut map = IOPermissionBitmap([0xff, 0xff, 0xff]);
        map.set_port_checked(0, false);
        assert_eq!(map.0, [0xfe, 0xff, 0xff]);

        let mut map = IOPermissionBitmap([0xff, 0xff, 0xff]);
        map.set_port_checked(15, false);
        assert_eq!(map.0, [0xff, 0x7f, 0xff]);
    }

    #[test]
    #[should_panic(
        expected = "Port 10 is beyond the maximum value Some(f) supported by this map"
    )]
    fn test_set_port_checked_out_of_range_3byte() {
        let mut map = IOPermissionBitmap([0x00, 0x00, 0xff]);
        map.set_port_checked(16, true);
    }

    #[test]
    #[should_panic(
        expected = "Port 8 is beyond the maximum value Some(7) supported by this map"
    )]
    fn test_set_port_checked_out_of_range_2byte() {
        let mut map = IOPermissionBitmap([0x00, 0xff]);
        map.set_port_checked(8, true);
    }

    #[test]
    #[should_panic(
        expected = "Port 0 is beyond the maximum value None supported by this map"
    )]
    fn test_set_port_checked_out_of_range_1byte() {
        let mut map = IOPermissionBitmap([0xff]);
        map.set_port_checked(0, true);
    }

    #[test]
    #[should_panic(
        expected = "Port 0 is beyond the maximum value None supported by this map"
    )]
    fn test_set_port_checked_out_of_range_empty() {
        let mut map = IOPermissionBitmap([]);
        map.set_port_checked(0, true);
    }
}