tartan_kernel/arch/
x86_common.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
//! Shared architecture-specific bindings for 32-bit and 64-bit Intel x86-based processors

use core::arch::naked_asm;
use core::mem::size_of;
use core::ptr::addr_of;
use memoffset::offset_of;
use paste::paste;
use tartan_arch::x86_common::interrupt::{
    InterruptDescriptorTableRegister, InterruptVector,
};
use tartan_arch::x86_common::protection::{
    DescriptorFlags, GateDescriptor, GateDescriptorFlags, GlobalDescriptorTableRegister,
    LocalDescriptorTableRegister, SegmentDescriptor, SegmentDescriptorFlags, Selector,
    SystemDescriptorType, TaskRegister,
};
use tartan_arch::x86_common::{ControlRegister0, ControlRegister4, FlagRegister};

#[cfg(target_arch = "x86")]
use tartan_arch::x86::protection::TaskStateSegmentHeader;

#[cfg(target_arch = "x86_64")]
use tartan_arch::x86_64::protection::TaskStateSegmentHeader;


static mut GLOBAL_DESCRIPTOR_TABLE: GlobalDescriptorTable = GlobalDescriptorTable {
    null_segment: SegmentDescriptor::new(),
    code_segment: SegmentDescriptor::new(),
    data_segment: SegmentDescriptor::new(),
    task_state_segment: SegmentDescriptor::new(),
};

static mut INTERRUPT_DESCRIPTOR_TABLE: InterruptDescriptorTable =
    InterruptDescriptorTable { descriptors: [GateDescriptor::new(); 0xff] };

static mut TASK_STATE_SEGMENT: TaskStateSegmentHeader = TaskStateSegmentHeader::new();


/// Global descriptor table structure specific to Tartan OS.
struct GlobalDescriptorTable {
    /// Dummy descriptor for segment index 0. The processor always treats index 0 as a
    /// null value, so this descriptor is ignored.
    pub null_segment: SegmentDescriptor,
    /// Main code segment that covers all memory, used by CS.
    pub code_segment: SegmentDescriptor,
    /// Main data that covers all memory, used by everything but CS.
    pub data_segment: SegmentDescriptor,
    /// Sole task state segment required by task register.
    pub task_state_segment: SegmentDescriptor,
}

/// Create a segment selector that points to the given descriptor field in the
/// [`GlobalDescriptorTable`].
macro_rules! global_selector {
    [$segment:ident] => {
        {
            let offset = offset_of!(GlobalDescriptorTable, $segment);
            Selector::new(offset.try_into().unwrap(), 0, false)
        }
    }
}


struct InterruptDescriptorTable {
    pub descriptors: [GateDescriptor; 0xff],
}


/// Set flags in general control registers to a known state
pub fn initialize_control_registers() {
    let mut flags = FlagRegister::get();
    assert!(!flags.virtual_8086_mode()); // Firmware/loader should have disabled
    flags.set_interrupt_enabled(true); // Should be harmless... maybe
    flags.set_io_privilege_level(0); // Basic security
    flags.set_alignment_check_or_access_control(true); // Check for Rust UB/extra security
    unsafe {
        FlagRegister::set(flags);
    }

    let mut cr0 = ControlRegister0::get();
    assert!(cr0.protected_mode()); // Firmware/loader should have enabled
    cr0.set_cache_disabled(false); // Should be harmless
    cr0.set_cache_not_write_through(false); // Should be harmless
    cr0.set_alignment_check_mask(true); // Check for Rust UB
    cr0.set_write_protect(true); // Basic security
    cr0.set_native_fpu_error(true); // Don't use MS-DOS compatibility mode
    cr0.set_fpu_emulation(true);
    #[cfg(target_arch = "x86_64")]
    {
        assert!(cr0.paging()); // Required in 64-bit mode
    }
    unsafe {
        ControlRegister0::set(cr0);
    }

    let mut cr4 = ControlRegister4::get();
    cr4.set_virtual_8086_extensions(false); // No reason to support this
    cr4.set_protected_virtual_interrupts(false); // No reason to support this
    cr4.set_timestamp_disabled(true); // Extra security, no use case yet
    cr4.set_debugging_extensions(true); // More modern, should be harmless
    cr4.set_page_size_extensions(false); // Not used yet
    cr4.set_machine_check_exception(true); // Should be harmless
    cr4.set_global_pages(false); // Not used yet
    cr4.set_performance_counter(false); // Extra security, no use case yet
    cr4.set_sse_and_fpu_save(false); // Need to write support
    cr4.set_simd_exceptions(false); // Need to write support
    cr4.set_restrict_user_mode_instructions(false); // TODO: Enable for extra security
    cr4.set_virtual_machine_extensions(false); // Intel-only, not used yet
    cr4.set_safer_mode_extensions(false); // Intel-only, poor implementation
    cr4.set_extended_state_save(false); // Need to write support
    cr4.set_supervisor_execution_prevention(false); // TODO: Enable for extra security
    cr4.set_supervisor_access_prevention(false); // TODO: Enable for extra security
    cr4.set_control_flow_enforcement(false); // Intel-only, not used yet
    #[cfg(target_arch = "x86_64")]
    {
        assert!(cr4.physical_address_extension()); // Required in 64-bit mode
        cr4.set_five_level_paging(false); // Not used yet
        cr4.set_extended_base_registers(false); // Not used yet
        cr4.set_process_context_ids(false); // Not used yet
        cr4.set_user_protection_keys(false); // Not used yet
        cr4.set_supervisor_protection_keys(false); // Intel-only, not used yet
    }
    unsafe {
        ControlRegister4::set(cr4);
    }

    #[cfg(target_arch = "x86_64")]
    {
        use tartan_arch::x86_64::ExtendedFeatureEnableRegister;

        let mut efer = ExtendedFeatureEnableRegister::get();
        assert!(efer.long_mode_active()); // How else are we here?
        efer.set_syscall(true); // Most efficient method for syscalls
        efer.set_no_execute(true); // Extra security
        unsafe {
            ExtendedFeatureEnableRegister::set(efer);
        }
    }
}


/// Initialize the segmentation system to use a flat memory model pointing to our
/// [`GlobalDescriptorTable`].
pub fn initialize_segments() {
    // Initialize the segment descriptors in our global descriptor table
    unsafe {
        GLOBAL_DESCRIPTOR_TABLE.code_segment = make_code_descriptor();
        GLOBAL_DESCRIPTOR_TABLE.data_segment = make_data_descriptor();
        GLOBAL_DESCRIPTOR_TABLE.task_state_segment = make_task_state_descriptor();
    }

    // Set the GDTR to use our global descriptor table, and point the segment selectors
    // (CS, DS, SS, etc.) to the new descriptors.
    let gdtr = GlobalDescriptorTableRegister {
        address: addr_of!(GLOBAL_DESCRIPTOR_TABLE) as usize,
        limit: (size_of::<GlobalDescriptorTable>() - 1).try_into().unwrap(),
    };
    unsafe {
        GlobalDescriptorTableRegister::set_with_segments(
            &gdtr,
            global_selector!(code_segment),
            global_selector!(data_segment),
        )
    }

    // Point the task register to our task state segment
    unsafe {
        TaskRegister::set(global_selector!(task_state_segment));
    }

    // We don't use local descriptors, so point the LDTR to the null descriptor
    unsafe {
        LocalDescriptorTableRegister::set(global_selector!(null_segment));
    }
}

fn make_code_descriptor() -> SegmentDescriptor {
    #![allow(clippy::field_reassign_with_default)] // Spurious: constructor is private

    let mut flags = SegmentDescriptorFlags::default();
    flags.set_present(true);
    flags.set_granularity(true);
    flags.set_is_application(true);
    flags.set_is_code(true);
    flags.set_code_readable(true);

    #[cfg(target_arch = "x86")]
    flags.set_application_mode_32(true);

    #[cfg(target_arch = "x86_64")]
    flags.set_code_mode_64(true);

    let mut descriptor = SegmentDescriptor::default();
    descriptor.flags = flags;
    descriptor.set_limit(SegmentDescriptor::LIMIT_MAX);
    descriptor
}

fn make_data_descriptor() -> SegmentDescriptor {
    #![allow(clippy::field_reassign_with_default)] // Spurious: constructor is private

    let mut flags = SegmentDescriptorFlags::default();
    flags.set_present(true);
    flags.set_granularity(true);
    flags.set_is_application(true);
    flags.set_is_code(false);
    flags.set_data_writable(true);

    #[cfg(target_arch = "x86")]
    flags.set_application_mode_32(true);

    let mut descriptor = SegmentDescriptor::default();
    descriptor.flags = flags;
    descriptor.set_limit(SegmentDescriptor::LIMIT_MAX);
    descriptor
}

fn make_task_state_descriptor() -> SegmentDescriptor {
    #![allow(clippy::field_reassign_with_default)] // Spurious: constructor is private

    let mut flags = SegmentDescriptorFlags::default();
    flags.set_present(true);
    flags.set_is_application(false);
    flags.set_system_type(SystemDescriptorType::TaskStateAvailable);

    let mut descriptor = SegmentDescriptor::default();
    descriptor.flags = flags;
    descriptor.set_address(addr_of!(TASK_STATE_SEGMENT) as usize);
    descriptor.set_limit((size_of::<TaskStateSegmentHeader>() - 1).try_into().unwrap());
    descriptor
}


pub fn initialize_interrupts() {
    /// Create a function that forwards the given interrupt number to the
    /// [`handle_unknown_interrupt`] function, and point the appropriate IDT entry to it.
    macro_rules! forward_interrupt {
        [$vector:literal] => {
            paste! {
                #[naked]
                unsafe extern "C" fn [< forward_interrupt_ $vector >]() {
                    // TODO: Save register state before calling handler, and support
                    // returning. This isn't critical at the moment since the handler just
                    // panics.

                    #[cfg(target_arch = "x86")]
                    naked_asm!(
                        "
                        push {}
                        call {}
                        ",
                        const $vector,
                        sym handle_unknown_interrupt,
                    );

                    #[cfg(target_arch = "x86_64")]
                    naked_asm!(
                        "
                        mov rdi, {}
                        call {}
                        ",
                        const $vector,
                        sym handle_unknown_interrupt,
                    );
                }

                unsafe {
                    INTERRUPT_DESCRIPTOR_TABLE.descriptors[$vector] =
                        make_interrupt_gate(
                            global_selector!(code_segment),
                            [< forward_interrupt_ $vector >],
                        );
                }
            }
        }
    }

    // Set up the interrupt gates in our IDT
    forward_interrupt!(0);
    forward_interrupt!(1);
    forward_interrupt!(2);
    forward_interrupt!(3);
    forward_interrupt!(4);
    forward_interrupt!(5);
    forward_interrupt!(6);
    forward_interrupt!(7);
    forward_interrupt!(8);
    forward_interrupt!(9);
    forward_interrupt!(10);
    forward_interrupt!(11);
    forward_interrupt!(12);
    forward_interrupt!(13);
    forward_interrupt!(14);
    forward_interrupt!(15);
    forward_interrupt!(16);
    forward_interrupt!(17);
    forward_interrupt!(18);
    forward_interrupt!(19);
    forward_interrupt!(20);
    forward_interrupt!(21);
    forward_interrupt!(22);
    forward_interrupt!(23);
    forward_interrupt!(24);
    forward_interrupt!(25);
    forward_interrupt!(26);
    forward_interrupt!(27);
    forward_interrupt!(28);
    forward_interrupt!(29);
    forward_interrupt!(30);
    forward_interrupt!(31);

    // Point the IDTR to our IDT
    let idtr = InterruptDescriptorTableRegister {
        address: addr_of!(INTERRUPT_DESCRIPTOR_TABLE) as usize,
        limit: (size_of::<InterruptDescriptorTable>() - 1).try_into().unwrap(),
    };
    unsafe { InterruptDescriptorTableRegister::set(&idtr) };
}

fn make_interrupt_gate(
    code_segment: Selector,
    handler: unsafe extern "C" fn(),
) -> GateDescriptor {
    #![allow(clippy::field_reassign_with_default)] // Spurious: constructor is private

    let mut flags = GateDescriptorFlags::default();
    flags.set_present(true);
    flags.set_is_application(false);
    flags.set_system_type(SystemDescriptorType::InterruptGate);

    let mut descriptor = GateDescriptor::default();
    descriptor.flags = flags;
    descriptor.set_selector(code_segment);
    descriptor.set_entry_point_offset(handler as usize);
    descriptor
}

fn handle_unknown_interrupt(vector: InterruptVector) {
    panic!("Interrupt {:?}", vector);
}